
Application of Voronoi Neighborhood Weighted Graph
Convolutional Networks for City-Sized Car Traffic

Prediction
Przemysław Bieleckia, Tomasz Hachaja,* and Jarosław Wąsa

aFaculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of
Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland

ORCID (Przemysław Bielecki): https://orcid.org/0000-0002-4776-3051, ORCID (Tomasz Hachaj):
https://orcid.org/0000-0003-1390-9021, ORCID (Jarosław Wąs): https://orcid.org/0000-0003-2964-745X

Abstract. The application of graph convolutional neural networks
for traffic prediction is a standard procedure; however, this approach
is rarely used under the assumption that the exact city plan is un-
known and the prediction area is a city-sized region. This paper fills
this gap by proposing and evaluating the Sample and Aggregate-
Voronoi method (SAGE-Voronoi), which utilizes the novel concept
of Voronoi Neighborhood Weighted Graph-based convolutional net-
works to predict car traffic in cities. It demonstrates the usefulness of
this method for short-time predictions using real sensors data from
the moderate-sized city of Darmstadt. We have utilized data from 35
days from March 1, 2024, resampled to 10-minute intervals. During
this period, there were 104 crossings with active sensors. The re-
sults obtained are compared with those of other neural network algo-
rithms. The proposed approach is not limited to spatiotemporal traffic
data and can be utilized in other similar domains. The SAGE-Voronoi
graph neural network enables the reliable prediction of varying car
traffic among network nodes. It also better fitted the non-typical data
in our dataset, showing its better generalization abilities than the ba-
sic SAGE network. The source code and dataset used in our exper-
iments are available for download, enabling the results to be fully
reproduced.

Keywords: Traffic Prediction, Voronoi Neighborhood, Graph Neu-
ral Network, Convolutional Network, Sensor Data, Short-Term, City-
Sized data.

1 Introduction

Traffic prediction is one of the most important issues in intelli-
gent transportation systems [16]. Many cities nowadays have sensor-
based infrastructure that enables real-time traffic monitoring. Thanks
to this high-fidelity data, civil engineers and scientists can visual-
ize actual traffic and perform reasoning and learning from historical
data. The contemporary machine learning approaches enable a bet-
ter understanding of traffic patterns and make short- and long-term
forecasts on the future of car traffic in the monitored area [9]. Be-
cause of obvious reasons, in urban areas, the motion of the vehicles
is constrained by streets, which can be modeled as graph data struc-
tures. Therefore, a natural approach to data-driven traffic modeling

∗ Corresponding Author. Email: thachaj@agh.edu.pl

is to apply graph-based methods such as graph convolutional neural
networks.

1.1 State-of-the-art

The application of Graph Neural Networks for city traffic forecasting
is a straightforward choice [13, 18, 2, 3]. However, it becomes more
challenging if there is no detailed information about the route graph.
In this particular situation, we need to estimate the connections be-
tween nodes representing the points at which traffic is measured. The
problem of connectivity between objects whose spatial coordinates
are known is often solved by the Voronoi diagram. Therefore, it is
unsurprising that the Voronoi-based approach is often used to solve
such problems. Over 30 years ago, in 1993, authors in [1] proposed
the construction of a Voronoi diagram over a set of points represent-
ing patterns in feature space to make it easier to derive alternative
neural network structures to achieve the desired pattern classifica-
tion.

More contemporary approaches use Voronoi schema to produce
data structural models for neural networks. For example, these mod-
els have been used for protein modeling [14, 12], neighborhood anal-
ysis for robotics tactile features related to contact depth [5] and path
planning [17], or general-purpose clustering [8]. In paper [7], the
spatiotemporal graph convolutional network based on Voronoi dia-
grams is used for traffic crash prediction. Paper [19] demonstrates
the effectiveness of the spatiotemporal-based predictions of the in-
tegration of Voronoi tessellations with spatiotemporal deep learning
models, such as Long Short-Term Memory (LSTM).

1.2 Novelty of this paper

As can be seen from the state-of-the-art survey, the application of
graph convolution neural networks for traffic prediction is a stan-
dard procedure; however, it is rarely used when the exact city plan
is unknown and the prediction area covers an entire city. This pa-
per fills this gap by proposing and evaluating a method that uses the
novel concept of Voronoi Neighborhood Weighted Graph-based con-
volutional networks for city-scale traffic prediction, more specifically
for forecasting traffic volume at intersections. The method is demon-
strated to be useful for short-time predictions using real sensor data

https://orcid.org/0000-0002-4776-3051
https://orcid.org/0000-0003-1390-9021
https://orcid.org/0000-0003-2964-745X


from a moderate-sized city. The results obtained are compared with
other neural network algorithms. The proposed approach is not lim-
ited to spatiotemporal traffic data and can be utilized in other similar
domains.

2 Materials and methods
The methodology used for prediction of the car traffic has two
components: (i) construction of a Voronoi Neighborhood Weighted
Graph (VN-WG) capturing spatial relations between sensors, and (ii)
a spatiotemporal neural network combining graph convolution with
recurrent modeling. Spatial embeddings are obtained with Graph-
SAGE, temporal dependencies with an LSTM layer, and the final
prediction with a fully connected layer. The following subsections
present the GraphSAGE formulation, the VN-WG construction, and
the hybrid SAGE-Voronoi model.

2.1 Sample and aggregate network layer

The sample and aggregate method (GraphSAGE), as described in
[11] is a reliable and popular method for inductive node embed-
ding. It incorporates node features into the learning algorithm and
can learn the topological structure of each node’s neighborhood. It
can be defined in the following way:

SAGE(F,W,A) =

ReLU

([
(F(n,m,if) ×W(if,of))(n,m,of)

pin(F(n,m,if), A)×W(if,of))(n,m,of)

]
(n,m,2·of)

)
(1)

Where: F - input features (tensor of observations), W - weight tensor
(trainable parameters), A - adjacency matrix of graph G, n - number
of vertices in graph G, m - input sequence length (number of sam-
ples in time series), if - input features count (number of features
per vertex), of - output features of SAGE count, pin - permutation
invariant pooling operator (often maximum, mean or sum). ReLU
(Rectified Linear Unit) introduces nonlinearity to the solution.

SAGE layer produces low-dimensional tensor representations for
all graph nodes in the form of a tensor with dimensionality (n,m, 2 ·
of), which is a concatenation of the features tensor F multiplied by
the weight tensor W and the features tensor from the specific neigh-
borhood of each node aggregated by permutation invariant pooling
pin multiplied by the same weight tensor W . Next, the embedding
propagates to a temporal modeling layer, such as LSTM or Gated
Recurrent Unit (GRU). The final prediction is formed by a fully
connected layer. Various approaches can be used to design a node’s
neighborhood in the graph. Assuming that we are dealing with real-
world spatiotemporal data, the most intuitive approach is either to
utilize the known topology of the graph with a distance-based thresh-
old or, if the graph is unknown, model the graph structure only by
distances between nodes, as in [20]:

aab =

{
e
−

d2ab
σ2 if a ̸= b, e

−
d2ab
σ2 ≥ ϵ

0 otherwise
(2)

Where aab is a coefficient in the adjacency matrix between nodes
indexed a and b, σ and ϵ are domain-specific parameters that depend
on the real-world distances. As it can be challenging to rationally
estimate the slope of (2) that is guided by σ, the simplified approach
is often used:

aab =

{
1 if a ̸= b, e

−
d2ab
σ2 ≥ ϵ

0 otherwise
(3)

which produces a binary adjacency matrix. The binary adjacency ma-
trix also simplifies the pin operator in (1) because it does not have to
take edge weight into account:

pina(F,A) = Θ(Fb∀Aab ̸= 0) (4)

where Θ is a permutation invariant pooling function (see explanation
below 1).
However, in that approach, we lose some information about graph
topology.

2.2 Voronoi Neighborhood Weighted Graph

Definition 1 (Voronoi Neighborhood Weighted Graph). Let P =
{p1, . . . , pn} be the set of sensor locations in the plane. Define the
Voronoi adjacency graph GV = (V,EV ), where the set of nodes
V = P and the edge {pi, pj} belongs to EV if the corresponding
Voronoi cells share a boundary. For a parameter dmax ∈ N, the
Voronoi Neighborhood Graph is defined as G = (V,E) with

{pi, pj} ∈ E ⇔ distGV {pi, pj} ≤ dmax,

where distGV is the shortest-path length in GV . A weighted version
G = (V,E,W ) is obtained by assigning to each edge {pi, pj} ∈ E
a weight wij derived from distGV (pi, pj) using one of the scaling
rules (5)–(7).

2.3 Voronoi neighborhood graph calculation

Let us assume that we are registering data at a finite number of points
(sensors) with known coordinates, and that the data are time series.
Also, let us assume that we anticipate the influence of spatial rela-
tions between nodes on time series values, and that the strength of the
influence is positively correlated with the proximity between points
(sensors). The intuitive approach to model the spatial relationship
between these points is to present them in the form of a graph GV

derived from the Voronoi diagram. The nodes of this graph are the
sensor locations; an edge connects two points if their Voronoi cells
share a boundary.

The Voronoi neighborhood graph G is derived from GV and has an
additional parameter dmax - maximal neighborhood size. G consists
of all the nodes from GV . Two nodes of G are connected if there is
a path in a graph GV of length no greater than dmax.

In order to calculate graphs GV and G we can apply Delaunay tri-
angulation because the Delaunay triangulation of a discrete point set
corresponds to the dual graph of the Voronoi diagram [6]. The pro-
posed algorithm for calculating GV and G is presented in Algorithm
1.

Figure 1 illustrates the process of calculating the Voronoi neigh-
borhood. In this image, a Voronoi diagram has been generated from
a set of points. To calculate the neighborhood for a certain point indi-
cated in red, we evaluate all cells around it with an increasing diam-
eter. The level of the neighborhood between the red and blue points
is color-coded. We repeat this procedure for all points in order to
calculate the adjacency matrix of G.

The next step in our approach is to rescale the adjacency matrix
A generated by Algorithm 1 so that the farther the path between the
nodes in graph GV is, the smaller the values in A. In other words,
the weights of the edges in A should be inversely proportional to the



Algorithm 1 Calculate Voronoi neighborhood graph
Require: P - a set of n points that represent the spatial position of

measurements (for example, the position of sensors at road cross-
ings), dmax - maximal neighborhood size
T ← Delaunay(P ) ▷ perform Delaunay tessellation,
returns data structure T which for each pi ∈ P holds information
about each pj ∈ P that has a common edge
A← [0]n×n ▷ initialize adjacency matrix of size n× n with
zeros for the graph that will be generated for each of the n points
in P
procedure CALCULATE_A(i, k, T,A, d, dmax) ▷ Calculate the
adjacency matrix where i - initial point index, k - neighbor point
index, T - Delaunay tessellation structure, A - adjacency matrix,
d - actual neighborhood distance.

for j ∈ T [k] do
if (A[i, j] = 0 or A[i, j] > d) and j ̸= i then

A[i, j]← A[j, i]← d
end if
if d < dmax then

Calculate_A(i, j, T, A, d+ 1, dmax)
end if

end for
end procedure
for pi ∈ P do ▷ Fill adjacency matrix for each pi ∈ P

Calculate_A(i, i, T,A, 1, dmax)
end for
return A

Figure 1: This figure illustrates the concept of calculating the Voronoi
neighborhood. The Voronoi diagram is generated from a set of points.
In order to calculate the neighborhood for a certain point indicated
in red, we evaluate all cells around it with increasing diameter. The
level of the neighborhood between the red and blue points is color-
coded.

path length between nodes in GV . In order to achieve this, we can
apply one of several possible approaches:

• Linear scaling:

a′
a,b =

{
1

aa,b
if aa,b ̸= 0

0 if aa,b = 0
(5)

• Exponential scaling:

a′
a,b = e1−aa,b (6)

• Binary thresholding:

a′
a,b =

{
1 if aa,b ̸= 0
0 if aa,b = 0

(7)

After applying Algorithm 1 and one of the approaches (5)-(7) we
can use the adjacency matrix A′ in SAGE layer (1). The pin operator
in (1) that takes edge weight into account becomes:

pina(F,A) = Θ(Fb ·Aab) (8)

2.4 Voronoi neighborhood in graph neural network:
SAGE-Voronoi

The graph convolutional neural network proposed in this paper is
composed of a SAGE layer (1) with the pin operator (8) for graph
embedding, followed by an LSTM layer for temporal modeling. The
final, third layer is the fully connected layer that calculates the net-
work response by performing a linear combination of the LSTM
outputs. We will refer to this network later in this paper as SAGE-
Voronoi. The loss function used for training is a mean squared error
(MSE).

2.5 Dataset

To evaluate our approach, we used a city-scale car traffic dataset from
Darmstadt, which is available to download from https://datenplatt
form.darmstadt.de/verkehr/apps/opendata/#/ (Access date April
27, 2025). The data is updated every minute and is provided in CSV
format. The collection contains the values of traffic volume values for
individual intersections. This reliable dataset was used in previous
research [10, 16].

In order to download data, we have used the script available in
repository https://github.com/browarsoftware/darmstadt_download
(Access date April 27, 2025). We have utilized data from 35 days
from March 1, 2024, resampled to 10-minute intervals. During this
period, 104 crossings with active sensors were taken into account. We
added up the measurements taken by all the sensors at each crossing,
so we did not consider the direction of car traffic. As a result, the ad-
jacency matrix A′ is symmetric. If, during the 35 days, some sensor
did not provide traffic data, we replaced readings with zero (we did
not apply any procedure for filling in missing data). We have split the
dataset into the train, validation, and test subsets in proportions 0.5,
0.2, and 0.3, respectively, starting from the earliest to the latest time
periods. The test and validation data were used during training. Eval-
uation of method performance was made on the test dataset. Each
subset was randomly shuffled using a fixed seed. We repeated our
experiments 10 times, changing the seed each time. Each of the three
dataset features was standardized by removing the mean and scaling
to unit variance.

Figure 2 shows the locations of car crossings on a map of the city
of Darmstadt. Red crossings are those discussed in detail in Sections
3 and 4.

3 Results
We have implemented our method using Python 3.8 programming
language and the machine learning libraries Tensorflow 2.8, Keras

https://datenplattform.darmstadt.de/verkehr/apps/opendata/#/
https://datenplattform.darmstadt.de/verkehr/apps/opendata/#/
https://github.com/browarsoftware/darmstadt_download


A169

A146

A153

A115

A171

A130

A062

A145 A101

A114

A058

A061 A150A173

A089

A053

A162

A015

A151
A103

A020

A057

A041

A116 A016

A181

A182A042
A049

A050

A112

A054

A055

A056

A164

A108
A063

A068
A113

A088

A117

A118

A119

A013

A021

A078
A079

A100

A166

A125

A139

A102

A140

A149

A124

A044

A085
A077

A131

A127
A185

A039

A105

A172

A064

A065

A073

A082

A072

A087 A040

A038

A142
A147

A080

A008 A090

A069
A070

A009A134

A096
A095

A136

A170

A094

A126 A076

A024

A110A059

A029
A028

A006

A012
A075A161

A163

A007

A104

A160

A099

A022

A045
A071

A081

A034

A032 A033

A036
A035

A051

A052
A086

A141

A037

A093

A107

A083
A067

A155

A154

A017

A003

A019

Figure 2: Positions of car crossings on the city map of Darmstadt. The red crossings are those discussed in detail in Sections 3 and 4. Map data
copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org [15].

2.8, and Scipy 1.8, in which the Delaunay tessellation is imple-
mented. Our implementation significantly extends the source code
https://keras.io/examples/timeseries/timeseries_traffic_forecasting/
(Access date April 27, 2025). The source codes and dataset of our
experiments can be downloaded from https://github.com/bielprze/
VN-WGCN (Access date April 27, 2025), and the experiments are
fully reproducible.

In order to evaluate the proposed SAGE-Voronoi method, we have
utilized the dataset described in Section 2.5. We have considered
three short-term forecast horizons: 1 sample horizon (10 minutes
ahead), 2-sample horizons (20 minutes ahead), and 3-sample hori-
zons (30 minutes ahead). We have tested three adjacency scalers, as
defined in equations (5)-(7). The results of the test SAGE-Voronoi
network were compared to the original SAGE approach and the sim-
ple, Pure LSTM approach. Both the SAGE and SAGE-Voronoi had

64 LSTM units with the length of W in (1) set to 10. The networks
were trained using the RMSprop optimizer [4] with a learning rate
of 0.0002 for 40 epochs. The maximum neighborhood size dmax in
Algorithm 1 was set to 5.

A Pure LSTM network consists of an LSTM layer with 200 units,
a connected dense layer with 200 units with ReLu activation, and
a final dense layer with a size equivalent to the forecast horizon.
The network was trained using the Adam optimizer with a learning
rate of 0.0001 for 200 epochs. The loss function was mean squared
error (MSE). The meta parameters of SAGE-family networks were
initially suggested by the creators of the original SAGE implemen-
tations, while the Pure LSTM was the result of parameter tuning,
which, due to limited space, will not be described in this work.

We have evaluated four error functions: MSE, relative mean
squared error (RMSE), mean absolute error (MAE), and mean rel-

https://www.openstreetmap.org
https://keras.io/examples/timeseries/timeseries_traffic_forecasting/
https://github.com/bielprze/VN-WGCN
https://github.com/bielprze/VN-WGCN


Table 1: The evaluation results of the Pure LSTM neural network on the test dataset described in Section 2.5.

Forecast Horizon Mean MSE Mean RMSE Mean MAE Mean MRE
10 minutes (1 sample) 10792.890 94.784 39.915 0.300
20 minutes (2 samples) 11327.710 98.502 40.619 0.304
30 minutes (3 samples) 11758.250 100.989 41.530 0.314

Table 2: The evaluation results for the SAGE neural network on the test dataset described in Section 2.5.

Forecast Horizon Mean MSE Mean RMSE Mean MAE Mean MRE
10 minutes (1 sample) 6356.707 70.725 25.044 0.241
20 minutes (2 samples) 7373.572 76.669 27.536 0.261
30 minutes (3 samples) 8201.786 81.129 30.072 0.287

Table 3: The evaluation results of the SAGE-Voronoi neural network on test dataset described in Section 2.5.

Forecast Horizon Adjacency Scaler Mean MSE Mean RMSE Mean MAE Mean MRE

10 minutes (1 sample) (5) 6192.241 69.946 24.644 0.229
10 minutes (1 sample) (6) 6221.831 70.089 24.820 0.232
10 minutes (1 sample) (7) 6266.784 70.308 24.666 0.234
20 minutes (2 samples) (5) 7324.215 76.407 27.389 0.263
20 minutes (2 samples) (6) 7414.280 76.876 27.619 0.263
20 minutes (2 samples) (7) 7326.109 76.422 27.373 0.261
30 minutes (3 samples) (5) 8114.812 80.676 29.743 0.275
30 minutes (3 samples) (6) 8248.948 81.283 30.106 0.283
30 minutes (3 samples) (7) 8063.123 80.383 29.499 0.275

ative error (MRE). Results for the Pure LSTM network are presented
in Table 1, for the SAGE network in Table 2, and for SAGE-Voronoi
in Table 3. All results were averaged over 10 repetitions with differ-
ent random seeds (see Section 2.5); hence the table headers report
"Mean MSE," "Mean RMSE," "Mean MAE," and "Mean MRE." In
Figure 3, we present detailed traffic forecast values for three selected
crossings that are representative of our dataset. These crossings are
A003, A017, and A019.

4 Discussion

As shown in Tables 1-3, SAGE-family graph networks outperform
the Pure LSTM architecture. Passing information about the topology
of the nodes clearly improves the prediction capability of the SAGE
and SAGE-Voronoi architectures. A non-linear fully connected layer
in the Pure LSTM approach is insufficient to deduce this information
from the training dataset. The Mean MRE prediction of Pure LSTM
never dropped below 0.3 while the Mean RMSE was around 0.9 and
the Mean MAE around 0.4. It is also worth noting that there is a
positive correlation between the values of MSE, RMSE, MAE and
MRE.This means that an increase or decrease in one of these met-
rics is also reflected in an increase or decrease in the others (this is
obvious in the case of MSE and RMSE). The MRE metric is espe-
cially important because it shows the error rate as a percentage of the
actual value. In the case of the Darmstadt dataset, the traffic varies
from dozens to thousands of cars per sample, so a relative measure is
more appropriate for judging prediction quality. Both networks ob-
tained very similar results in the case of SAGE and SAGE-Voronoi.
For a forecast horizon of 10 minutes (1 sample) and 30 minutes (3
samples), the results of SAGE-Voronoi were slightly better for all
adjacency scaling methods considered. For one and three samples,
prediction Mean MRE in SAGE-Voronoi dropped by 0.012 com-
pared to the SAGE approach while using linear scaling (5). For the

20-minute prediction (2 samples), SAGE-Voronoi has slightly worse
results in the case of exponential scaling (6) for all error metrics,
while the other two adjacency scaling resulted in slightly better re-
sults in all metrics beside Mean MRE which has identical values for
(7). Therefore, we can conclude that, in most cases, applying the
Voronoi neighbourhood graph improvement proposed in this paper
has a positive influence on the prediction of the SAGE graph neural
network architecture.

Figure 3 presents a more detailed visualization of the three net-
works’ performance. These three crossings were selected because
they exhibit significantly different scales of average movement per
unit of time. As can be seen, both SAGE and SAGE-Voronoi per-
form very similarly; however, tthe quantitative error measures clearly
demonstrate the advantage of the Voronoi approach. The Pure LSTM
approach is visibly and quantitatively inferior to the other methods.
An interesting phenomenon also occurs at the A017 crossing, where
there is heavy traffic from April 1 to April 2 (see (c) and the enlarged
fragment in (d)). The SAGE-Voronoi was able to predict the anoma-
lous traffic more accurately.

Summarizing the proposed SAGE-Voronoi graph neural network
allows reliable prediction of varied car traffic among network nodes.
It also better fitted the non-typical data in our dataset, showing its
better generalization abilities than the basic SAGE network.

5 Conclusion

The Voronoi Neighborhood allows modeling of real-world scenarios
in which the measurement sensors are not uniformly distributed over
an area. In the case when those sensors are situated in the road cross-
ings, considering the neighborhood to be distance-based (see equa-
tion (8)) may lead to incorrect conclusions about the graph topol-
ogy. The results indicate that, applying the Voronoi framework sig-
nificantly improves the predictive ability of a neural network. The



results obtained are promising, and further research will address the
full potential of the proposed Voronoi-based framework. There are no
methodological obstacles to applying the proposed methodology to
non-symmetric graphs. Future work will investigate predictive ability
on larger datasets with longer time series. Since the proposed method
is not limited to traffic data, it may also be applied and evaluated in
other spatiotemporal domains.

References
[1] N. Bose and A. Garga. Neural network design using voronoi diagrams.

IEEE Transactions on Neural Networks, 4(5):778–787, 1993. doi: 10.1
109/72.248455.

[2] S. Cheng, Z. Wang, B. Yang, and K. Nakano. Convolutional neural
network-based lane-change strategy via motion image representation
for automated and connected vehicles. IEEE Transactions on Neu-
ral Networks and Learning Systems, 35(9):12953–12964, 2024. doi:
10.1109/TNNLS.2023.3265662.

[3] N. Davis, G. Raina, and K. Jagannathan. Grids versus graphs: Partition-
ing space for improved taxi demand-supply forecasts. IEEE Transac-
tions on Intelligent Transportation Systems, 22(10):6526–6535, 2021.
doi: 10.1109/TITS.2020.2993798.

[4] R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy. Improving
the efficiency of rmsprop optimizer by utilizing nestrove in deep learn-
ing. Scientific reports, 13(1):8814, 2023.

[5] W. Fan, M. Yang, Y. Xing, N. F. Lepora, and D. Zhang. Tac-vgnn: A
voronoi graph neural network for pose-based tactile servoing. In 2023
IEEE International Conference on Robotics and Automation (ICRA),
pages 10373–10379, 2023. doi: 10.1109/ICRA48891.2023.10160288.

[6] S. Fortune. Voronoi diagrams and delaunay triangulations. In Comput-
ing in Euclidean Geometry, pages 193–233. 1997. doi: 10.1142/9789
814355858_0006. URL https://www.worldscientific.com/doi/abs/10.
1142/9789814355858_0006.

[7] J. Gan, Q. Yang, D. Zhang, L. Li, X. Qu, and B. Ran. A novel voronoi-
based spatio-temporal graph convolutional network for traffic crash pre-
diction considering geographical spatial distributions. IEEE Trans-
actions on Intelligent Transportation Systems, 25(12):21723–21736,
2024. doi: 10.1109/TITS.2024.3452275.

[8] C. Gentile and M. Sznaier. An improved voronoi-diagram-based neural
net for pattern classification. IEEE Transactions on Neural Networks,
12(5):1227–1234, 2001. doi: 10.1109/72.950151.

[9] B. Gomes, J. Coelho, and H. Aidos. A survey on traffic flow prediction
and classification. Intelligent Systems with Applications, 20:200268,
2023. doi: https://doi.org/10.1016/j.iswa.2023.200268.

[10] Ł. Gosek, F. Muras, P. Michałek, and J. Wąs. Traffic prediction based
on modified nagel-schreckenberg model. case study for traffic in the
city of darmstadt. In International Conference on Parallel Processing
and Applied Mathematics, pages 478–488. Springer, 2019. doi: https:
//doi.org/10.1007/978-3-030-43222-5_42.

[11] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page
1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

[12] I. Igashov, K. Olechnovič, M. Kadukova, C. Venclovas, and S. Gru-
dinin. Vorocnn: deep convolutional neural network built on 3d voronoi
tessellation of protein structures. Bioinformatics, 37(16):2332–2339, 02
2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab118. URL
https://doi.org/10.1093/bioinformatics/btab118.

[13] W. Jiang and J. Luo. Graph neural network for traffic forecasting: A
survey. Expert Systems with Applications, 207:117921, 2022. ISSN
0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.117921. URL ht
tps://www.sciencedirect.com/science/article/pii/S0957417422011654.

[14] K. Olechnovič and Č. Venclovas. Voroif-gnn: Voronoi tessellation-
derived protein–protein interface assessment using a graph neural net-
work. Proteins: Structure, Function, and Bioinformatics, 91(12):1879–
1888, 2023.

[15] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org, 2017.

[16] A. Patelli, J. R. Hamilton, V. Lush, and A. Ekart. A gentler approach
to urban traffic modelling and prediction. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE, 2022. doi: 10.110
9/CEC55065.2022.9870273.

[17] F. Qian, W. Liu, H. Bao, and X. Shi. A cnn-based fast generalized
voronoi diagrams framework for path planning. In 2024 International

Conference on Networking, Sensing and Control (ICNSC), pages 1–5,
2024. doi: 10.1109/ICNSC62968.2024.10759920.

[18] E. Sant’Ana da Silva, H. Pedrini, and A. L. d. Santos. Applying graph
neural networks to support decision making on collective intelligent
transportation systems. IEEE Transactions on Network and Service
Management, 20(4):4085–4096, 2023. doi: 10.1109/TNSM.2023.32
57993.

[19] H. Wang, H. Zhou, and S. Cheng. Dynamical system prediction from
sparse observations using deep neural networks with voronoi tessel-
lation and physics constraint. Computer Methods in Applied Me-
chanics and Engineering, 432:117339, 2024. ISSN 0045-7825. doi:
https://doi.org/10.1016/j.cma.2024.117339. URL https://www.scienc
edirect.com/science/article/pii/S0045782524005942.

[20] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional net-
works: a deep learning framework for traffic forecasting. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, IJ-
CAI’18, page 3634–3640. AAAI Press, 2018. ISBN 9780999241127.
URL https://dl.acm.org/doi/10.5555/3304222.3304273.

https://www.worldscientific.com/doi/abs/10.1142/9789814355858_0006
https://www.worldscientific.com/doi/abs/10.1142/9789814355858_0006
https://doi.org/10.1093/bioinformatics/btab118
https://www.sciencedirect.com/science/article/pii/S0957417422011654
https://www.sciencedirect.com/science/article/pii/S0957417422011654
 https://www.openstreetmap.org 
https://www.sciencedirect.com/science/article/pii/S0045782524005942
https://www.sciencedirect.com/science/article/pii/S0045782524005942
https://dl.acm.org/doi/10.5555/3304222.3304273


2024-03-27 2024-03-29 2024-03-31 2024-04-01 2024-04-03 2024-04-05
Date

0

100

200

300

400

500

600

Tr
af

fic
 [n

um
be

r o
f c

ar
s p

er
 1

0 
m

in
ut

es
]

Crossing A003
Ground truth
SAGE
SAGE-Voronoi
Pure LSTM

(a) Errors for SAGE (850.383, 29.161, 22.221, 0.150), SAGE-Voronoi (809.970, 28.460, 21.580, 0.145) and Pure LSTM
(3391.328, 58.235, 43.948, 0.263).

2024-03-27 2024-03-29 2024-03-31 2024-04-01 2024-04-03 2024-04-05
Date

0

10

20

30

40

50

60

70

Tr
af

fic
 [n

um
be

r o
f c

ar
s p

er
 1

0 
m

in
ut

es
]

Crossing A019
Ground truth
SAGE
SAGE-Voronoi
Pure LSTM

(b) Errors for SAGE (35.861, 5.988, 4.402, 0.331), SAGE-Voronoi (34.095, 5.839, 4.283, 0.325) and Pure LSTM
(62.588, 7.911, 5.783, 0.390).

2024-03-27 2024-03-29 2024-03-31 2024-04-01 2024-04-03 2024-04-05
Date

0

500

1000

1500

2000

2500

3000

Tr
af
fic
 [n
um
be
r o
f c
ar
s p
er
 1
0 
m
in
ut
es
]

Crossing A017
Ground truth
SAGE
SAGE-Voronoi
Pure LSTM

(c) Errors for SAGE (87823.811, 296.350, 109.077, 0.234), SAGE-Voronoi (60322.241, 245.605, 95.932, 0.226) and Pure
LSTM (83675.687, 289.267, 165.341, 0.649).

03-31 22 04-01 00 04-01 02 04-01 04 04-01 06 04-01 08 04-01 10 04-01 12 04-01 14
Date

0

500

1000

1500

2000

2500

3000

Tr
af

fic
 [n

um
be

r o
f c

ar
s p

er
 1

0 
m

in
ut

es
]

Crossing A017
Ground truth
SAGE
SAGE-Voronoi
Pure LSTM

(d) Errors for SAGE (864463.345, 929.765, 678.609, 0.547), SAGE-Voronoi (530029.143, 728.031, 525.195, 0.503) and Pure
LSTM (630720.066, 794.178, 582.447, 0.756).

Figure 3: The detailed results for the selected crossings. Under each plot, we present mean error values between the original dataset and
evaluated networks. The error orders are the same as in Tables 1. The networks are ordered as follows: SAGE, SAGE-Voronoi, Pure LSTM.


	Introduction
	State-of-the-art
	Novelty of this paper

	Materials and methods
	Sample and aggregate network layer
	Voronoi Neighborhood Weighted Graph
	Voronoi neighborhood graph calculation
	Voronoi neighborhood in graph neural network: SAGE-Voronoi
	Dataset

	Results
	Discussion
	Conclusion

