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Abstract. Traffic forecasting is a crucial component of intelligent
transportation systems (ITS), with applications in congestion preven-
tion, route optimization, and urban mobility management. Recent ad-
vances in traffic forecasting have focused on combining graph-based
spatial modeling and large language model (LLM) based temporal
reasoning. In this work, we introduce GAT-LLM, a novel hybrid
architecture that integrates Graph Attention Networks (GATSs) for
spatial representation with a partially frozen pre-trained LLM for
temporal sequence modeling. GATSs effectively capture spatial de-
pendencies across traffic locations, while LLM handles long-range
temporal patterns in traffic sequences. We propose a unified embed-
ding strategy that fuses graph-derived spatial features, temporal en-
codings, and positional embeddings, creating semantically rich and
well-structured input for transformer-based models. Our approach
constructs a spatio-temporal representation of traffic conditions, en-
abling context-aware input for pretrained LLMs. Preliminary ex-
periments on benchmark datasets show promising results, outper-
forming existing graph-based, attention-based, and LLM-based mod-
els. This work highlights the potential of combining graph neu-
ral networks and LLMs to build more expressive and transfer-
able spatiotemporal forecasting systems. The code is available at:
https://github.com/SadiaTabassum1216/GATLLM.

1 Introduction

Traffic congestion is a major global issue with a detrimental impact
on economic efficiency and quality of life. In certain countries, the
costs associated with it are estimated to be around 2% of GDP [2].
Traffic forecasting predicts congestion levels based on various meth-
ods to optimize flow and support informed route design. Accurate
forecasting is the foundation of intelligent transportation systems
(ITS), with applications in congestion prevention, route optimization,
and urban mobility management. It helps users plan routes, saves
time and energy, and enables city planners to manage traffic effec-
tively. The core challenge of traffic prediction lies in capturing the
complex spatiotemporal nature of traffic data. This includes dynamic
temporal variations such as rush hour patterns and daily/weekly cy-
cles, and spatial correlations governed by the road network topol-
ogy. Additionally, traffic flow is influenced by social events, holi-
days, weather conditions, road accidents, and other external factors
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[20].

Traditional statistical models such as ARIMA [1]] and Kalman fil-
ters [12] capture temporal patterns but fail to model the complex,
non-linear, and non-stationary nature of traffic flow with spatiotem-
poral dependencies. Deep learning techniques address this issue, as
they can model such complex and dynamic characteristics. Earlier
DNN-based approaches use convolutional neural networks (CNNs)
for spatial and recurrent neural networks (RNNs) for temporal depen-
dencies. However, CNNs are designed for grid-shaped structures and
use Euclidean distance, making them less suitable for non-Euclidean
road networks [[10].

To address the problem of CNN, graph neural networks (GNNs)
are effective models for learning spatial dependencies, represent-
ing roads as nodes and their connections as edges. When combined
with temporal models such as LSTM, GRU, and TCNs, frameworks
like DCRNN [[14] and STGCN [28]] effectively model spatiotempo-
ral dependencies. However, in many cases, the spatial and temporal
components are either fused shallowly or treated separately, limiting
generalization in complex urban settings. Graph Convolutional Net-
works (GCNGs) [[11] use fixed weights for neighborhood aggregation,
while Graph Attention Networks (GATSs) [24] use dynamic attention
mechanisms based on node relevance, making them better at captur-
ing heterogeneous traffic patterns.
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Figure 1. Similarity between textual data and time series data
Recently, large language models (LLMs) have achieved signif-
icant success across domains such as NLP, computer vision, and

time series analysis. Figure[I]illustrates the structural similarity be-
tween time series and textual data. Although LLMs were originally
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designed for NLP using token embeddings, not directly suited for
transportation time-series inputs, their ability to process sequences of
fixed dimensional vectors makes them suitable for multivariate traf-
fic data [21]]. This opens new opportunities for traffic forecasting. We
focus on LLMs due to their strong generalization and reasoning abil-
ities, enabling versatile application with minimal task-specific train-
ing. While their effectiveness in other domains is well established,
few studies have explored their use for modeling urban dynamics
from spatiotemporal data.

Architectures like Informer [31], Autoformer [25], and FED-
former [32] leverage attention mechanisms and frequency-aware de-
signs to enhance time series forecasting. LLMs such as GPT-2 and
BERT have been adapted to time-series forecasting by tokenizing
numeric sequences. Models like LLMTime [6] and PromptCast [27]]
exemplify this approach, showing strong temporal modeling capabil-
ities including few-shot and zero-shot generalization. However, they
mainly focus on temporal aspects and lack spatial topology model-
ing. STLLM [17] processes multi-location sequences but does not
incorporate graph-based spatial dependencies, limiting its ability to
understand traffic flows with road connectivity. Some LLMs like
GATGPT (3] integrate graph neural networks for spatial dependency.
While GATGPT combines graph attention for spatial relationships
with LLM-based temporal modeling using positional embeddings,
its design primarily emphasizes spatial integration, with less atten-
tion to tailored long-range temporal modeling.

To address these limitations, we introduce GAT-LLM, a novel ar-
chitecture that combines Graph Attention Networks (GATSs) for spa-
tial representation with a pretrained language model for temporal se-
quence modeling. Our approach constructs a unified spatiotempo-
ral representation by embedding road relationships through GATs
and fusing them with learnable temporal encodings and positional
embeddings. This representation is fed into a partially frozen trans-
former: lower layers remain frozen to retain general sequence mod-
eling capabilities, while higher layers are fine-tuned to adapt to traf-
fic specific patterns, balancing generalization and specialization. The
key contributions of our work are as follows:

e We propose GAT-LLM, a hybrid spatio-temporal model that in-
tegrates graph-based spatial learning with large language model-
based temporal reasoning for traffic forecasting.

e We design a unified embedding strategy that fuses graph attention-
based spatial features, temporal encodings, and positional embed-
dings, allowing structured and context-aware input to pre-trained
LLMs.

e We use a partially frozen fine-tuning mechanism for the LLM, en-
abling efficient training. This approach leverages general purpose
reasoning from the lower transformer layers while adapting the
higher layers to the target domain.

This work bridges the gap between spatial graph modeling and
transformer-based sequence learning in traffic forecasting, offering
a new paradigm for developing scalable, accurate, and transferable
spatiotemporal models. The remainder of this paper is organized as
follows. Section 2] reviews related work, Section 3] presents the pro-
posed GAT-LLM architecture, Section [d] describes the experimental
setup and results, and Section[5]concludes the paper.

2 Related Work

In this section, we review related work on traffic prediction from two
perspectives: graph-based architectures and language model-based
architectures.

Graph-Based Architectures: Recent advancements in spatio-
temporal traffic forecasting have focused on graph-based methods,
which are effective in modeling road network spatial topology. Graph
Convolutional Networks (GCNs) have gained popularity for captur-
ing spatial dependencies. For example, DCRNN [14] introduced dif-
fusion convolution for spatio-temporal modeling, while STGCN [28]
combined spectral graph convolutions with 1D convolution for bet-
ter feature extraction. Other notable GCN-based models include
T-GCN [29], which integrates GCNs with Gated Recurrent Units
(GRUs) to capture both spatial and temporal characteristics, and
A3TGCN [3], which enhances T-GCN by adding attention to de-
tect global traffic flow trends. ASTGCN [7]] employs an attention
mechanism to weigh the importance of different time steps and
spatial neighbors. PSTGCN][10]] further addresses these limitations
of static adjacency matrices by employing a dynamic probabilistic
spatiotemporal graph. However, GCNs aggregate information using
fixed weights, limiting their ability to capture dynamic spatial re-
lationships and long-range temporal dependencies, particularly un-
der dynamic conditions such as road closures or accidents. To ad-
dress these issues, Graph Attention Networks (GATSs) introduce dy-
namic attention to better model spatial dependencies in dynamic traf-
fic networks. GMAN [30] extends this by employing adaptive atten-
tion and gating to capture both spatial and temporal dynamics, while
STGAT [8] combines GAT with an additional LSTM to jointly learn
spatial interactions and their temporal correlations. This highlights
the need for models that integrate both spatial and temporal depen-
dencies for effective traffic forecasting. Despite these advancements,
effectively integrating both complex spatial and long-range temporal
dependencies remains a challenge in many graph-based approaches,
highlighting a critical area for further research.

Language Model-Based Architectures: The success of Trans-
former architectures[23|] in natural language processing has led to
their adaptation for time series forecasting. Transformer-based mod-
els like Informer [31], Autoformer [25]], and FEDformer [32] have
achieved state-of-the-art results in time series forecasting by improv-
ing attention efficiency and capturing periodicity. Building upon this,
Large language models (LLMs), such as GPT-2 and BERT, have re-
cently been adapted for numeric time series forecasting by tokenizing
data, enabling pre-trained models to perform zero-shot or fine-tuned
forecasting tasks. This is evident in models like LLMTime [6], Time-
LLM [9], and PromptCast [27]]. GATGPT [5]], for example, leverages
the generative capabilities of LLMs while integrating graph attention
for spatial dependencies, although focusing primarily on spatial as-
pects over comprehensive temporal modeling.

UrbanGPT [15)] and UniTime [[18]] extend LLMs to cross-domain
forecasting through instruction tuning and in-context learning.
TFT [16]] is another model that combines LSTM with attention mech-
anisms to capture temporal dependencies, making it effective in
multi-horizon forecasting. However, models like UrbanMind [19],
which utilize prompt engineering, often fail to capture crucial spatial
dependencies, which are essential in dynamic traffic networks.

STLLM [17] introduces a partially frozen transformer for multi-
location forecasting, yet lacks explicit graph-based spatial modeling,
limiting its ability to capture key spatial dynamics such as road con-
nectivity and neighborhood interactions. While these models excel
in temporal generalization, they remain spatially agnostic, which re-
stricts their overall effectiveness in traffic forecasting. This gap un-
derscores the need for novel architectures that can effectively com-
bine the powerful temporal modeling capabilities of LLMs with
robust spatial representations to fully capture the complexities of
spatio-temporal traffic data.
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Figure 2.  Architecture of our proposed GAT-LLM model

3 Methodology

In this section, the problem statement and detailed structure of the
proposed GAT-LLM are described.

3.1 Problem Statement

The traffic prediction problem can be defined as a spatio-temporal
forecasting problem. The road network is modeled as a graph G =
(V, E, A), where: V is the set of N road segments, E is the set of
edges representing the connectivity of the road, A € RV*¥ is the
adjacency matrix encoding the connections between nodes. At each
time step ¢, traffic measurements across all road segments are cap-
tured by a feature vector x; € R, where the n-th element represents
the measurement from road segment n. Given historical data over the
past T time steps, X = {X;—741,...,%:} € RV*7T along with the
adjacency matrix A. The goal of the traffic prediction task is to pre-
dict the traffic data for the next T time steps. The model outputs the
predicted traffic values for the next 7" time steps as Y = f(X, A),
where Y = {yi41,..., Yo7/} € RN*T’ represents the predicted
sequence of traffic features over those future time steps. In this study,
we approximate f(-) using our GAT-LLM model, which combines
temporal embedding, graph embedding, and a partially frozen pre-
trained LLM for the prediction task.

3.2 Details of proposed GAT-LLM

The proposed GAT-LLM is a fusion-based architecture for spatio-
temporal traffic forecasting that integrates temporal embeddings,
graph-based spatial reasoning, and a partially frozen pretrained lan-
guage model. As shown in Figure@ the model captures both tempo-
ral patterns and spatial dependencies through a structured processing
pipeline.

Temporal embeddings are constructed using a combination of
learnable intra/inter-day components and sinusoidal encoding from
the historical data to capture daily and weekly trends. In parallel,
spatial relationships among traffic nodes are modeled using a multi-
head Graph Attention Network (GAT), which enables each node to

focus on its most relevant neighbors via learned attention weights.
The resulting temporal and spatial embeddings are concatenated to
form node-level representations.

These node embeddings are then added with learnable positional
encoding to retain temporal sequence and passed into a Large Lan-
guage Model (LLM). Here, the lower transformer layers remain
frozen, while the upper attention layers are fine-tuned to adapt to
traffic-specific dynamics. This partially frozen attention strategy bal-
ances generalization with task-specific learning, enabling efficient
and accurate traffic prediction.

3.3 Temporal Embedding

To effectively model periodic patterns in time series data, we in-
corporate both learnable and sinusoidal temporal embeddings. The
time series historical data serves as the input for constructing these
embeddings. The learnable embeddings consist of two components:
one capturing intra-day variations across different time steps within
a day, and another capturing inter-day patterns across the seven days
of the week.

In parallel, we construct cycle-based embeddings using sine and
cosine transformations to represent temporal periodicity:

. [ 2mt 2mt

Cycley,,;, = sin (Td) + cos (Td) (1
. 2mt 27t

Cycleye; = sin (T—w) + cos (T—w) )

where, T denotes the number of time steps in a day and 7, de-
notes the number of days in a week. These scalar values are then
projected into the embedding space through learnable linear trans-
formations.

The final temporal representation is obtained by summing the
learned intraday and interday embeddings with the projected cycle-
based components:

o

3

= €intra-day,t + €inter-day, t + €cycle-day,t + €cycle-week,t



This design enables the model to effectively capture both fixed
temporal patterns and periodic trends across different time scales.

3.4 Graph Embedding

To better understand how traffic patterns are influenced by nearby lo-
cations, we generate graph-based embeddings that encode the struc-
tural properties of the road network. These embeddings enable the
model to capture how traffic on one road segment is affected by its
neighbors. We employ a multi-head graph attention network (GAT)
to learn these spatial relationships. GAT assigns dynamic attention
weights to each neighboring node, allowing the model to focus more
on the most influential connections.
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Figure 3. Spatial correlation among ten randomly selected neighboring
nodes

Figure [3] presents an adjacency heatmap showing the learned spa-
tial dependencies among ten selected neighboring nodes from the
NYC taxi dataset. The heatmap reveals significant variation in influ-
ence strength, highlighting that real-world spatial dependencies are
often heterogeneous and context-dependent.

Let x; € RE denote the input feature vector of node ¢, where C
is the feature dimension. In GAT, the attention coefficient between
node ¢ and its neighbor j is computed as:

exp (LeakyReLU (a' [Wx; || Wx;]))
2 ken(i) exp (LeakyReLU (aT [Wx; || Wxx]))

“

Qi =

Here, x; denotes the input feature vector of node i, W € RF*¢
is a shared learnable weight matrix for feature projection, a € R?¥
is a learnable attention vector, v is the attention weight from node
i to neighbor j, and N (z) is the set of neighbors of node i. || denotes
concatenation, and a' is the transpose of the attention vector. To en-
hance learning capacity and stability, we apply multi-head attention
by computing K attention heads in parallel and concatenating their
outputs:

el = ilio | Y o whx; (5)
JEN(3)
Here, al(-]-c) and W*) denote the attention weights and projection

matrices for the k-th head, o is a nonlinear activation function, and ||
indicates concatenation. The resulting vector egs> is the spatial em-
bedding for node ¢, capturing its neighborhood structure.

In our model, the GAT module is applied once at the beginning to
generate fixed spatial embeddings for each node, based on the road
network’s adjacency matrix. These embeddings are shared across all

time steps, enabling consistent spatial context. We combine them

with the input features and temporal encoding to form spatiotem-
poral representations, which are then processed by the LLM module
to model long-range temporal dependencies. This decoupled spatial-
temporal learning framework improves efficiency while preserving
the model’s ability to capture complex interactions across space and
time.

3.5 Positional Encoding

To preserve the temporal structure of the input sequence, we intro-
duce a learnable positional encoding. Since the model bypasses the
default node and positional embeddings of traditional transformer-
based architectures, explicit encoding is required to maintain se-
quence order. This positional encoding is designed to match the di-
mensionality of the pre-trained LLM, ensuring compatibility during
processing.

The input road data X € RT*¥*C consists of T time steps, N
road segments, and feature dimension C'. The temporal embedding
of node i is denoted el(-t), and the spatial embedding is e§s>. These
are concatenated to form a combined representation:

e = [el”e!”] (©)

A learnable positional encoding P ; is then added to the com-
bined embeddings at each time step ¢ and node :

Xi=el) + Py, Wte{l,T}ie{l,N} (D

This addition enables the model to distinguish between different
time steps and retain the sequential nature of the input.

3.6 Partially Frozen Attention (PFA) LLM

We adopt a Partially Frozen Attention (PFA) strategy to integrate
pretrained knowledge from GPT-2 while adapting to the spatial-
temporal characteristics of traffic data. Unlike the Frozen Pretrained
Transformer (FPT), which freezes all transformer layers, PFA selec-
tively unfreezes only the attention modules in the upper layers. This
allows task-specific fine-tuning with minimal modification, retaining
the generalization ability of the pretrained model.

The model takes as input a combined representation that encodes
spatial, temporal, and positional information for each road segment.
We denote the full encoded sequence X = {X'; ;} as the initial hid-
den representation Hy for the input to the LLM. This representation
is fed into a truncated version of the LLM with L layers, where the
first F' = L — U layers are fully frozen—including both multi-head
attention (MHA) and feed-forward network (FFN) modules. The re-
maining U layers retain frozen FFNs but unfreeze MHA modules to
allow adaptation. All layers follow the standard Transformer struc-
ture with pre-layer normalization and residual connections:

H;, =
Hi, =

MHA(LN(H,)) + H;, (3
FEN(LN(H,)) + H;, i€ [1,L) )

Here, the trainable or frozen status of the MHA and FFN mod-
ules depends on the layer index 4. For ¢ < F', both MHA and FFN

are frozen; for ¢ > F', only MHA is trainable. The detailed module
definitions are:

IN(H) = 70 tyg (10)

W (head, |- - - |[heads,), (1n

MHA(H;) =



head; = Awn(WPH, WSH, W) H), (12)

QK )
An(Q, K, V) = soft v, 13
n(Q ) softmax ( NG (13)
FFN(H;) = (max(O, HW, + b1)) Wa+ba (14)

Here, H; and H; denote the outputs of the first and second layer
normalization, respectively; v and ( are learnable parameters of LN;
© and o denote the batch-wise mean and standard deviation; ®
indicates element-wise multiplication, and || denotes concatenation
across attention heads.

To stabilize training and improve information flow, a residual con-
nection is added between the input and output of the LLM. Finally, a
regression head is applied via a convolutional layer to predict traffic
features over the next 7" time steps:

Voo = RConv(Hipa; 0,), Yo € RT XN*C (15)

Here, Hiinal represents the final LLM output for all time steps, 6,
denotes the parameters of the regression head, IV is the number of
road segments, and C' is the number of output channels. This design
enables efficient fine-tuning on domain-specific spatial-temporal pat-
terns while preserving the expressive power of the pretrained model.

4 Experiments

In this section, our objective is to validate the superiority of our GAT-
LLM through a series of extensive experimental evaluations.

4.1 Datasets

This section details the datasets used to examine the predictive per-
formance of GAT-LLM and baselines, with real-world traffic data
from NYCTaxi and CHBike.

NYCTaxi: The NYCTaxi dataset captures over 35 million taxi
rides across New York City, neatly organized into 266 virtual sta-
tions. Covering the period from April 1st to June 30th, 2016, it
records data in half-hour intervals, resulting in a total of 4,368
timesteps.

CHBike: The CHBike dataset tracks how Citi Bike bike-sharing
program in New York City used the bike-sharing system during the
same three-month period as NYCTaxi, from April to June 2016. Af-
ter filtering out less-used stations, it focuses on the 250 busiest ones.
Like NYCTaxi, it breaks down the data into 4,368 half-hour intervals.

4.2 Baselines

We compare GAT-LLM against a diverse set of strong baselines,
classified into two main groups based on their architectural design-
Graph-based models and LLM-based models.

Graph-based Models: These models focus on learning spatial
and temporal dependencies directly from graph-structured data with-
out using LLM.

e DCRNN [14]: Models traffic flow as a diffusion process over a
graph, employing diffusion convolution within a recurrent frame-
work.

e STGCN [28]: Combines spectral graph convolutions with tempo-
ral 1D convolutions to jointly model spatial and temporal depen-
dencies.

e ASTGCN [7]: Integrates spatial and temporal attention mecha-
nisms with graph convolution for adaptive modeling of traffic pat-
terns.

e GWN [26]: Introduces an adaptive adjacency matrix and gated
temporal convolutions for flexible spatial modeling.

o AGCRN [4]: Employs adaptive graph learning and node-specific
parameters to model heterogeneous spatio-temporal dependen-
cies.

o GMAN [30]]: An attention-based model with spatial and temporal
gating units in an encoder-decoder structure.

e ASTGNN [7]: Employs hierarchical attention to capture both
node-level and time-level importance.

e DGCRN [13]: A dynamic graph convolutional recurrent network
that learns evolving graph structures over time.

LLM-based Models: These models leverage large language
models (LLMs) for time series forecasting tasks, adapting them to
the spatio-temporal context.

e OFA [33]: A unified transformer based model, adapted for all
types of time series tasks, avoids making changes to the self-
attention and feed-forward layers inside GPT-2’s residual blocks.

o LLAMA?2 [22]: A large pretrained transformer-based language
model developed by Meta. We adapt LLAMAZ2 to the traffic fore-
casting setting using frozen transformer layers and time-series in-
put formatting.

o GATGPT [5]: Combines the Graph Attention Network (GAT)
with a frozen pretrained GPT-2 transformer to model spatiotem-
poral dependencies for imputation task.

e STLLM [17]: A recent LLM-based approach that encodes multi-
location time series as token sequences and leverages a partially
frozen transformer for forecasting.

4.3 Implementations

Aligning with contemporary practices, we split the NYCTaxi and
CHBike datasets into training, validation, and test sets using a 6:2:2
ratio. The historical input length P and prediction horizon S were
both set to 12, enabling multi-step traffic forecasting. Weekly pe-
riodicity was modeled using 7, = 7, and daily periodicity using
Tq = 48, where each step corresponds to 30 minutes.

Experiments for GAT-LLM were conducted on Kaggle’s GPU plat-
form, which offered limited computational capacity. The underlying
language model was GPT-2 with six transformer layers, trained au-
toregressively—i.e., it predicts one time step at a time, feeding the
output of the previous step into the next. For comparison, we fol-
lowed the baseline setup reported in the STLLM paper [17]]. All mod-
els used the Adam optimizer with a learning rate of 0.001, as reported
by the original authors. Our evaluation protocols were aligned with
those in STLLM to ensure a fair comparison.

4.4 Evaluation Metrics

Four metrics are used for evaluating the models: Mean Absolute Er-
ror (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Squared Error (RMSE), and Weighted Absolute Percentage Error
(WAPE). MAE and RMSE quantify absolute errors, while MAPE
and WAPE assess relative errors. The Mean Absolute Error (MAE)
is the primary loss function. In all metrics, lower values indicate su-
perior prediction performance:



Table 1. Model comparison in terms of MAE, RMSE, MAPE (%), and WAPE (%).
Models NYCTaxi Pick-up NYCTaxi Drop-off CHBike Pick-up CHBike Drop-off
MAE RMSE MAPE WAPE MAE RMSE MAPE WAPE MAE RMSE MAPE WAPE MAE RMSE MAPE WAPE
DCRNN 540 971 35.09% 20.43% 5.19 9.63 37.78% 19.82% 2.09 330 5422% 4226% 196 294 5142% 39.61%
STGCN 571 1022 36.51% 21.62% 538  9.60 39.12% 20.55% 2.08 331 53.63% 42.08% 2.01 3.07 5045% 40.62%
ASTGCN 743 1384 4796% 28.04% 698 1470 4548% 26.60% 2776 445 6423% 5571% 279 420 69.88% 56.49%
GWN 543 939 37.79% 20.55% 5.03 878 35.63% 19.21% 2.04 320 53.08% 4095% 195 298 50.30% 39.43%
AGCRN 579 1011 4040% 21.93% 545 9.56 40.67% 20.81% 2.16 346 56.35% 43.69% 2.06 3.19 5191% 41.78%
GMAN 543 947 3439% 2042% 5.09 895 35.00% 1933% 220 335 57.34% 44.06% 2.09 3.00 54.82% 42.00%
ASTGNN 590 1071 40.15% 22.32% 6.28 12.00 49.78% 23.97% 237 3.67 60.08% 47.81% 224 335 5721% 4527%
DGCRN 544 982 3578% 20.58% 5.14 9.39 35.09% 19.64% 2.06 321 54.06% 41.51% 196 293 51.99% 39.70%
OFA 582 1042 36.67% 22.00% 5.60 10.14 37.39% 21.36% 2.06 321 53.55% 41.70% 196 297 49.64% 39.68%
GATGPT 592 1055 37.83% 2239% 5.66 1039 37.36% 21.60% 2.07 323 5254% 41.70% 195 294 49.26% 39.43%
LLAMA2 535 948 4132% 2027% 5.66 1074 4747% 21.63% 2.10 337 56.63% 4249% 199 3.03 5523% 40.28%
ST-LLM 529 942 3355% 20.03% 5.07 9.07 3334% 19.18% 199 3.08 53.54% 40.19% 189 2.81 49.50% 38.27%
GAT-LLM 524 921 34.08% 1827% 5.12 943 34.25% 18.03% 158 245 52.78% 40.29% 151 225 50.12% 28.13%
MAE = — Y -Yi|, (16)
m i=1 o
m |y
vare - 190 i Y , (A7) i
m =1 Yl
RMSE ! i (Y/ Y)2 (18)
- k2 K2 b o
mn i=1 ‘ * o Nodendex ” =
2?;1 Y-V
WAPE = S Y x100. 19 Figure 4. Traffic speed prediction at 30-minute horizon compared with
i=1

where m is the number of all predicted values.

4.5 Parameter Analysis

To enhance GAT-LLM’s performance, we applied Bayesian Opti-
mization to tune key hyperparameters. The final configuration in-
cluded a learning rate of 1 x 10™%, batch size of 8, and 300 training
epochs. A weight decay of 3 x 1073 was used to improve gener-
alization. All experiments were conducted on Kaggle’s hosted envi-
ronment, equipped with two NVIDIA Tesla T4 GPUs (each with 16
GB VRAM), 31 GB of system RAM, and CUDA version 12.6. Due
to RAM constraints, a smaller batch size was necessary for stable
training. Additionally, only the top 2 transformer layers were fine-
tuned, while lower layers remained frozen to balance computational
efficiency with task-specific adaptation.

4.6 Results

The comparison results with baselines are shown in Table [T} The
bold results are the best, and the underlined results are the second
best. Result on taxi drop dataset can be seen in Figure[d]

The experimental evaluation across multiple benchmark datasets
reveals several key insights into spatio-temporal traffic forecasting:

e The proposed GAT-LLM achieves state-of-the-art performance
across all scenarios, consistently outperforming LLM-based base-
lines such as OFA and LLAMAZ2, highlighting its superior ability
to capture complex spatio-temporal patterns.

e Compared to STLLM, which lacks explicit graph modeling,
GAT-LLM shows clear improvements across nearly all metrics,
confirming the benefit of integrating graph attention for spatial
dependencies.

ground truth in Taxi_Drop dataset

e Larger model size does not guarantee better performance. Despite
having more parameters, LLAMA2 underperforms GAT-LLM,
emphasizing the importance of task-specific design over scale.

e OFA, while a strong generalist model, performs poorly on struc-
tured traffic data due to its limited handling of spatio-temporal
dependencies.

e Graph-based models like GWN and DGCRN capture spatial pat-
terns well but struggle with temporal generalization, resulting in
lower overall performance than GAT-LLM.

o Attention-based GNNs such as ASTGNN and GMAN perform
well on specific datasets but lack the consistency of GAT-LLM,
indicating limitations in generalization.

Overall, the results suggest a clear performance hierarchy among
model categories, with LLM-based architectures outperforming
graph-based counterparts. The consistent superiority of the proposed
GAT-LLM highlights the effectiveness of integrating graph-based
spatial reasoning with LLM-driven temporal modeling, offering a
robust and generalizable solution for spatio-temporal traffic forecast-

ing.

5 Conclusion

In this work, we introduced GAT-LLM, a novel hybrid architec-
ture that integrates graph-based spatial modeling with large language
model-based temporal reasoning for spatio-temporal traffic forecast-
ing. By combining Graph Attention Networks (GATs) with a par-
tially frozen pretrained transformer, GAT-LLM is designed to jointly
capture spatial dependencies across traffic locations and long-range
temporal patterns in traffic sequences. Our unified embedding strat-



egy incorporates graph-derived spatial features, temporal encodings,
and positional embeddings, making the input well-structured and se-
mantically meaningful for transformer-based processing.

Preliminary experiments on benchmark datasets such as NYCTaxi
and CHBike suggest that GAT-LLM offers promising performance
compared to existing graph-based, attention-based, and LLM-based
models, including STLLM, OFA, and LLAMA2. While these ini-
tial results are encouraging, further evaluation is needed to compre-
hensively assess generalization and scalability across diverse traf-
fic environments. Our study highlights the potential of aligning
GNNs with LLMs to build more expressive and transferable spatio-
temporal forecasting systems. Future work may explore broader
benchmarks and applications in real-time intelligent transportation
systems, where domain-aware structures can enhance the capabili-
ties of pretrained sequence models.
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