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Abstract. Urban Air Mobility (UAM) presents emerging chal-
lenges in airspace coordination, particularly in densely populated
metropolitan areas where the proliferation of drones, air taxis, and
other aerial vehicles increases the risk of mid-air conflicts. This
work introduces a declarative approach to strategic deconfliction us-
ing Answer Set Programming (ASP), enabling time-synchronized
and optimized flight routing to ensure conflict-free operations. We
benchmark the ASP solution against a Constraint Programming (CP)
model, evaluating both approaches through scalability tests and re-
source (time and memory) usage analysis. Results indicate that ASP
consistently outperforms CP in execution time and scalability for
small to medium-sized problem instances, while CP demonstrates
more stable memory consumption but suffers from significant perfor-
mance degradation as problem complexity increases. These findings
highlight the potential of ASP for efficient and scalable deconfliction
in future UAM systems.

1 Introduction

Urban Air Mobility (UAM) is transforming the way people and
goods move within cities, offering a promising solution to alleviate
ground traffic congestion, reduce emissions, and increase transporta-
tion efficiency [17]. The UAM ecosystem encompasses a wide range
of air vehicles, including electric vertical takeoff and landing (eV-
TOL) aircraft, drones, air taxis, and helicopters, which are expected
to operate in densely populated metropolitan areas. However, the in-
tegration of these new air vehicles into the existing airspace poses
significant challenges, particularly in terms of safety, efficiency, and
scalability [30]. To meet this challenge, industry actors and regulators
are adjusting UAM Concept of Operations (ConOps) by expanding
helicopter corridors into specific air lanes for eVTOLs [3] bypassing
traditional Air Traffic Controller (ATC). For UAM, the US Federal
Aviation Administration (FAA) and National Aeronautics and Space
Administration (NASA) have proposed concepts for Unmanned Air-
craft System Traffic Management (UTM) in recent years [13, 3]. One
of the most critical challenges facing UAM is the need for effec-
tive conflict management, also known as deconfliction. Deconfliction
refers to the process of predicting, detecting, and resolving potential
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conflicts between air vehicles, as well as between air vehicles and
other air traffic, obstacles, or restricted airspace [30].

In this work, we build upon established frameworks to model and
solve the Strategic Deconfliction (SD) problem in UAM. SD, the first
of three layers in Air Traffic Management (ATM) [16], addresses
conflict resolution prior to departure through airspace organization,
demand-capacity balancing, and traffic synchronization. The second
layer, Tactical Deconfliction, manages in-flight separation using real-
time data such as position, heading, and speed – sourced from radar
or telemetry. The third, Collision Avoidance, relies on onboard sys-
tems to prevent imminent collisions. Our focus is on the traffic syn-
chronization aspect of SD, which involves proactive trajectory plan-
ning to reduce conflict risk and optimize airspace usage. We ad-
dress this challenge using Answer Set Programming (ASP) to de-
velop scalable, conflict-free routing strategies. ASP is well-suited for
air traffic management due to its strength in solving complex com-
binatorial problems [15]. By encoding the problem as logical rules,
it efficiently generates optimal, conflict-free flight plans that comply
with safety and operational requirements. To the best of our knowl-
edge, no existing literature applies ASP or similar logic-based declar-
ative methods to SD in UAM. Most prior work relies on numerical
techniques, as detailed in a later section. The key contributions of
this paper are: (i) formalizing the SD problem, (ii) modelling the
airspace topology, drone fleet, and the SD problem, and (iii) empiri-
cally evaluating the approach through scalability tests, comparing its
performance with Constraint Programming (CP).

The paper is structured as follows: Section 2 reviews related work
on startegic deconfliction in UAM. Section 3 introduces ASP fun-
damentals. Section 4 defines the SD problem with a motivating ex-
ample and formalization. Section 5 details the ASP-based modelling
approach. Section 6 presents the evaluation methodology and results.
Finally, Section 7 concludes with key insights and future directions.

2 Related works
This section reviews related work in two areas: (i) state-of-the-art
approaches to SD, and (ii) ASP-based scheduling in comparable do-
mains, given its absence in current SD research.

Strategic deconfliction involves pre-departure decisions – such
as ground delays and waypoint merging – to balance traffic de-



mand with airspace capacity. Sacharny and Henderson [20] propose
a greedy scheduling algorithm that minimizes deviation from de-
sired release times. Torabbeigi et al. [29] model parcel delivery us-
ing a set covering approach for strategic planning and mixed integer
linear programming (MILP) for operations. The works [21, 22] in-
troduce a lane-based navigation framework with one-way lanes and
polygonal roundabouts, enabling computation of conflict-free launch
intervals. Their Lane Strategic Deconfliction (LSD) method sup-
ports one-dimensional strategic deconfliction using this lane-based
model. Tang et al. [26] formulate conflict-free trajectory planning as
a mixed-integer Second-Order Cone program (SOCP). Bertram et al.
[6] introduces FastMDP-GPU, a first-come-first-served scheduler
generating conflict-free plans on demand. Sacharny et al. [25] con-
tribute a comprehensive lane-based framework, including scheduling
algorithms, performance analysis tools, and a tactical deconfliction
protocol. Huang et al. [12] applie multi-agent reinforcement learn-
ing (MARL) to low-altitude conflict resolution. Thompson et al. [28]
propose a rapidly-exploring random tree (RRT) and Thompson et al.
[27] an A∗ based algorithms for deconflicted routing. Chen et al.
[7] combine demand-capacity balancing (DCB) with reinforcement
learning, introducing both MILP-based and heuristic DCB methods.
Liu et al. [16] model airspace using stacked hexagonal tessellation
and solve SD via integer programming. Pradeep et al. [18] address
SD in urban package delivery using a a mixed-integer non-linear
programming (MINLP) model for scheduling under temporal con-
straints. Finally, Xue [30] compare centralized and decentralized ar-
chitectures across all deconfliction layers, analysing their robustness
to communication and state estimation errors.

ASP has been effectively applied to various scheduling problems.
Ricca et al. [19] use ASP to automate team formation at the Gioia
Tauro seaport. Dodaro and Maratea [8] and Alviano et al. [4] apply
ASP to nurse scheduling and rescheduling, respectively, optimizing
shift assignments, and minimizing disruptions. Dodaro et al. [9] ad-
dresses chemotherapy scheduling in oncology clinics. ASP has also
been used for train scheduling [1, 2], combining routing and op-
timization via hybrid approaches with difference constraints using
Clingo[DL].

3 Answer Set programming

Answer Set Programming (ASP) is a declarative programming
paradigm [15] that is based on logic programming and non-
monotonic reasoning, which allows for the representation of incom-
plete or uncertain information. A logic program consists of rules of
the form: a1 ← a2, . . . , am,not am+1, . . . ,not an. Where each
ai is an atom of form p(t1, . . . , tk) and all ti are terms, composed
function symbols and variables. Atom a1 is often called head atom,
while a2 to am and am+1 to an are also referred to as positive and
negative body literals, respectively. As usual, not denotes negation
as failure. Rules without body are called facts. The head is uncon-
ditionally true and the arrow is usually omitted. Conversely, rules
without head are called integrity constraints (or denials). To ease the
use of ASP in practice, several extensions have been developed. First
of all, language constructs include conditional literals and cardinal-
ity constraints. The former are of the form a : b1, ..., bm, the latter
can be written as s{d1; ...; dn}t, where a and bi are possibly negated
(regular) literals and each dj is a conditional literal; s and t provide
optional lower and upper bounds on the number of satisfied literals
in the cardinality constraint. We refer to b1, . . . , bm as a condition.
Note, more elaborate forms of aggregates are obtained by explicitly
using functions (e.g., #sum) and relation symbols (e.g., <=).

Semantically, a logic program induces a set of stable models or
answer sets, being distinguished models of the program determined
by the stable models semantics [11]. ASP solvers (e.g. Clingo [10]
and DLV [14]) use efficient algorithms based on non-monotonic rea-
soning and logic programming techniques to compute answer sets
for given programs. These solvers typically employ grounding tech-
niques to convert first-order logic into propositional form so that ASP
solvers can be used for solving them as efficiently as possible with
the current knowledge.

4 Problem statement

4.1 Lane-based airspace structure

The addressed problem follows the principle of the lane-based
airspace structure highlighted in [25] as regard the creation and lay-
out of the track network. In [23], the authors discuss the results of an
in-depth comparison of FAA-NASA strategic deconfliction (FNSD)
and Lane-based strategic deconfliction demonstrating that FNSD suf-
fers from several types of complexity with an high computational
burden in resolving flight paths which are generally absent from the
lane-based method. The two major disadvantages of the lane-based
system are: (i) aerial vehicle are restricted to a fixed set of lanes, and
this may result in greater distance travelled, and (ii) the vehicle may
require to turn more to follow lanes rather than a smooth trajectory.
On the other hand, lanes allow for efficient and effective real-time de-
confliction to mitigate contingencies [24]. The lane-based approach
defines a set of one-way lanes where each lane is defined by an en-
try point, an exit point, and a one-dimensional curve between the
two. The lane structure is modelled like a direct graph G = (V,E),
where V is the set of vertexes or lane entry-exit point and E the set of
lanes. Two-way traffic between vertexes can be achieved by having
air lanes next to each other at the same altitude or at different alti-
tudes. Since aerial vehicles move in three dimensions, the lanes must
form 3D corridors. Additional design constraints can be specified
in terms of headway — that is, the safe separation distance between
vehicles. The combination of headway requirements and corridor de-
sign supports a variety of vehicle trajectory constraints, while the di-
rected graph structure imposed on the airspace provides agents with
an organized environment for computation. Lanes may have other
associated properties e.g., speed restrictions specified by the UTM.
Lanes are connected so that every vertex has either in-degree or out-
degree equal to one. This contrasts with both zone-based deconflic-
tion (that presumes that vehicles can enter and exit in any direction
and thus the entire zone must be reserved, which is inefficient for
large areas), and with cell-based deconfliction (that combines zone
reservation with general motion planning within each cell). Figure 1
shows an example of lane structure as a graph G = (V,E), where
V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4)} for the one-way
structure and E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)} for the
two-way alternative. In particular, vertex 1 and 4 are ground nodes
while vertex 2 and 3 are waypoints of the airspace structure at some
altitude. The lanes allow only one direction of travel without over-
taking.

4.2 Problem introduction

The SD problem is to produce a set of scheduled flight paths such
that no two aircraft ever get closer than a specified safety distance
or headway (h) either in time or space. Consider Figure 1. A flight
must schedule its entry-exit times through a sequence of lanes, where
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Figure 1. A simple one-way (a) and two-way (b) three-lane layout

the exit time from the previous lane equals the entry time of the fol-
lowing lane. In order to determine whether flights have a conflict, we
use the Space-Time Lane Diagram (STLD) proposed in [25] to rep-
resent the situation graphically, as shown in Figure 2. The horizontal
axis represents time, while the vertical axis represents the distance
along the lane. A STDL is created for each lane. The two blue lines
represent two scheduled flights named f1 and f2 with start times of
1 and 4 in lane 1–2 with speeds 2 and 1, respectively. The STDL
shows their progress through the three lanes; it can be seen that there
is always a time headway of at least 1 unit. Suppose a new flight f3
must be scheduled, with speed 2, and the requested launch interval is
[0, 21]. This means that the earliest launch time is 0 while the latest
one is 21. The goal is to establish departure times that do not conflict
with those already present and find the trajectory for all lanes that
does not conflict with all flights travelling in their respective lanes.
For example, consider f3 starting at time 10 (red line); then it exits
Lane 1-2 and enters Lane 2-3 at time 15; the figure shows that f3
crosses the path of f2 and therefore is disallowed. On the other hand,
if f3 starts at time 0, then its headway is always equal to 1 time unit
from f1, and since both flights are characterized by the same speed,
they never get any closer. Moreover, for Lane 2–3 and Lane 3–4 f3’s
headway is still 1 unit from f1, so it is allowed.

4.3 Problem formalization

We formalize the SD problem as a couple (N,F ) where N is the
airspace network and F is the set of flights to be scheduled in N .

The network N is in its turn a tuple (V,E, Iv ,Ev , l, h), where:
(V,E) is a directed graph, Iv ⊂ V is the set of ground nodes where
a flight starts its trip, Ev ⊂ V is the set of ground nodes where a
flight ends its trip, l : E → N assigns the lane length and h ∈ N is
the headway distance (time or space) between flights.

The set F is represented by tuples (S,L, start , end , e, l, s),
where: (S,L) is an acyclic sub-graph of (V,E) and represents the
flight route, start : F → Iv gives the ground vertex where a flight
starts its trip, end : F → Ev gives the ground vertex where a flight
ends its trip, e : F → N gives the earliest time a flight can start its
trip, l : F → N gives the latest time a flight can start its trip and
s : F → N is the speed associated to a flight.

For our example, in Figure 1 (a) and Figure 2, the SD problem
is defined for N as V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4)},
Iv = {1}, Ev = {4}, l(1, 2) = 10, l(2, 3) = 10 and l(3, 4) = 10
and h = 1. Suppose that f1 and f2 have been scheduled, the new
flight F = {f3}, to be scheduled, is defined as S = {1, 2, 3, 4},
L = {(1, 2), (2, 3), (3, 4)}, start(f3) = 1, end(f3) = 4, e(f3) =
0, l(f3) = 21 and s(f3) = 2.

A solution to the SD problem (N,F ) is represented by the pair
(R,A), where: (i) R is a function that assigns to each flight a spe-
cific route in the network, and (ii) A is an assignment of arrival
times to each flight at each node along their path, such that flights

are pairwise deconflicted. A route is a sequence of nodes, pairwise
connected by lanes. We write v ∈ r and (v, v′) ∈ r to denote that
node v or lane (v, v′) are contained in the route r = (v1, . . . , vn)
that is, whenever v = vi for some 1 ≤ i ≤ n or this addition-
ally v′ = vi+1, respectively. A route R(f) = (v1, . . . , vn) for
f = (S,L, start , end , e, l, s) ∈ F has to satisfy:

vi ∈ S ∀ i, 1 ≤ i ≤ n (1)

(vj , vj+1) ∈ L ∀ j, 1 ≤ j ≤ n− 1 (2)

start(f) = v1 ∧ end(f) = vn (3)

Conditions 1 and 2 enforce routes to be connected and feasible for the
flight in question and Condition 3 ensures that each route is between
a possible start and end node.

An assignment A is a function F × V → N, where A(f, v) is
undefined whenever v /∈ R(f). The function A assigns the arrival
time of a flight f to a node v. Given a route function R and h ∈ N,
an assignment A has to satisfy the following conditions:

A(f, start(f )) ≥ e(f) (4)

A(f, start(f )) ≤ l(f) (5)

Conditions 4 and 5 ensure that a flight starts its trip at the required
departure time interval.

Next, for all fi, fj ∈ F such that start(fi) = start(fj ):

A(fi, start(fi)) ̸= A(fj , start(fj )) (6)

|A(fi, start(fi))−A(fj , start(fj ))| ≥ h (7)

Condition 6 ensures that flights departure times are pairwise differ-
ent when flights share the same starting node. Finally, Condition 7
ensures a safety distance between two flights that begin their trip
from the same node.

For all f = (S,L, start , end , e, l, s) ∈ F , R(f) = (v1, . . . , vn)
such that 1 ≤ k ≤ n and h ∈ N

|A(fi, v)−A(fj , v)| ≥ h (8)

(A(fi, vk) ≤ A(fj , vk)) ∧ (A(fi, vk+1) ≤ A(fj , vk+1)) (9)

Condition 8 guarantees safe distance between flights at the same
node and Condition 9 resolves the conflict between two flights that
share the same lane. The solution of the previous example, shown
in Figure 2, is P (f3) = (1, 2, 3, 4) and A(f3, 1) = 0, A(f3, 2) =
5, A(f3, 3) = 10, A(f3, 4) = 15.

Strategic deconfliction involves pre-flight planning to prevent air-
craft conflicts while optimizing efficiency, safety, and operational
performance. To determine the quality of a solution, we have fo-
cused our attention on minimizing total delay with respect to the
required earliest launch time. We chose this metric because it is the
most widely used in the literature. Nothing prevents using a different
metric or more than one to determine the best plan by assigning an
evaluation priority. The quality of a solution (P,A) is determined via
the following condition:

minimize
∑
fi∈F

A(fi, start(fi))− e(fi) (10)

5 Solving real-world SD problems with ASP
In this section, we present our ASP-based approach to solving a cou-
ple of variants of the SD problem (the full encoding is also included
in the supplementary material). We first show how to represent flight
data, followed by the actual encoding of the problem.
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Figure 2. STDL representation of the flights. Conflict case (a–c), no conflict case (d–f)

5.1 Data encoding

For a given SD problem (N,F ), the airspace network N =
(V,E, Iv ,Ev , l, h) is represented by the facts

node ( v ) . edge ( v , v ’ ) . s t a r t n ( i v ) . endn ( ev ) .
l e n g t h ( ( v , v ’ ) , l ) . headway ( h ) .

for each v ∈ V , v,v’ ∈ E, iv ∈ Iv , ev ∈ Ev , l ∈ N and h ∈ N.
The set of flights F where each f = (S,L, start , end , e, l, s) ∈

F is defined by
f l i g h t ( f ) . l a n e ( f , v , v ’ ) . s t a r t ( f , i v ) . end ( f , ev ) .
speed ( f , s ) . r e q u e s t e d ( f , e , l ) .

with flight(f) the flight identification and for each v ∈ S,
v,v’ ∈ L, start(f) = iv, end(f) = ev, e(f) = e, l(f) = l and
s(f) = s.

For example, the following facts encode the network in Figure 1
plus the headway
node ( 1 . . 4 ) .
edge ( 1 , 2 ) . edge ( 2 , 3 ) . edge ( 3 , 4 )
s t a r t n ( 1 ) . endn ( 4 ) .
l e n g t h ( ( 1 , 2 ) , 1 0 ) . l e n g t h ( ( 2 , 3 ) , 1 0 ) . l e n g t h ( ( 3 , 4 ) , 1 0 ) .
headway ( 1 ) .

while the set F = {f1, f2, f3} of flights to be scheduled, with the
respective requested launch time interval, is given by
f l i g h t ( f1 ) . speed ( f1 , 2 ) .
l a n e ( f1 , 1 , 2 ) . l a n e ( f1 , 2 , 3 ) . l a n e ( f1 , 3 , 4 ) .
s t a r t ( f1 , 1 ) . end ( f1 , 4 ) .
r e q u e s t e d ( f1 , 1 , 5 ) .

f l i g h t ( f2 ) . speed ( f2 , 3 ) .
l a n e ( f2 , 1 , 2 ) . l a n e ( f2 , 2 , 3 ) . l a n e ( f2 , 3 , 4 ) .
s t a r t ( f2 , 1 ) . end ( f2 , 4 ) .
r e q u e s t e d ( f2 , 2 , 4 ) .

f l i g h t ( f3 ) . speed ( f3 , 2 ) .
l a n e ( f3 , 1 , 2 ) . l a n e ( f3 , 2 , 3 ) . l a n e ( f3 , 3 , 4 ) .
s t a r t ( f3 , 1 ) . end ( f3 , 4 ) .
r e q u e s t e d ( f3 , 3 , 4 ) .

5.2 Problem encoding

In the following we describe the general problem encoding of List-
ing 1. We encode one feasible plan as an answer set. Line 1 defines
the headway with the predicate headway(h) where h is a constant
taken as input. In Line 3, for each flight F is assigned a starting time
point stpoint(F,X,T) from its requested launch time interval
requested(F,E,L) at the starting node X with start(F,X).
This rule ensures that Conditions 4 and 5 are met. Line 6 is a denial
and eliminates the answer sets where 1) at least two flights share the
same starting time point for the same starting node, and 2) there is
no safe distance between flights at the same starting point. This de-
nial implements Conditions 6 and 7 in the opposite way, or we look
for plans that do not meet the denial. Rule at Lines 9–10 compute

the estimated time of arrival. The predicate eta(F,Y,T) (Line 7)
is true if there is a flight F that starts its trip at time Ti at node X,
F travel through the lane (X,Y) with speed S. The arrival time is
calculated taking into account the lane length length((X,Y),D)
applying the formula T = T i + (D/S). Lines 11–12 is applied to
all other nodes knowing the arrival time at the previous one. Lines
14–15 guarantees a safe distance between flights at the same node
and Lines 17–22 resolve the conflict between two flights that share
the same lane, thus implementing Condition 8 and Condition 9 re-
spectively.

Listing 1. ASP-based encoding of the SD problem with constant speed.
1 headway ( h ) .
2

3 1{ s t p o i n t ( F , X, T ) : T=E . . L}1 : − f l i g h t ( F ) ,
4 r e q u e s t e d ( F , E , L ) , s t a r t ( F ,X ) .
5

6 : − headway (H) , s t p o i n t ( F1 , X, T1 ) , s t p o i n t ( F2 , X, T2 ) ,
7 F1 != F2 , | T1−T2 | <H.
8

9 e t a ( F , Y, T ) : − s t p o i n t ( F , X, Ti ) , speed ( F , S ) ,
10 l a n e ( F , X,Y) , l e n g t h ( ( X,Y) ,D) , T=( Ti +(D/ S ) ) .
11 e t a ( F , Y, T ) : − e t a ( F , X, Ti ) , speed ( F , S ) , l a n e ( F , X,Y) ,
12 l e n g t h ( ( X,Y) ,D) , T=( Ti +(D/ S ) ) .
13

14 : − headway (H) , e t a ( F1 , X, T1 ) , e t a ( F2 , X, T2 ) ,
15 F1 != F2 , | T1−T2 | <H.
16

17 : − e t a ( F1 , X, Tx1 ) , e t a ( F1 , Y, Ty1 ) , e t a ( F2 , X, Tx2 ) ,
18 e t a ( F2 , Y, Ty2 ) , l a n e ( F1 , X,Y) ,
19 l a n e ( F2 , X,Y) , F1 != F2 , Tx1<Tx2 , Ty2<Ty1 .
20 : − s t p o i n t ( F1 , X, Tx1 ) , s t p o i n t ( F2 , X, Tx2 ) ,
21 e t a ( F1 , Y, Ty1 ) , e t a ( F2 , Y, Ty2 ) , l a n e ( F1 , X,Y) ,
22 l a n e ( F2 , X,Y) , F1 != F2 , Tx1<Tx2 , Ty2<Ty1 .

Encoding of Listing 1 assumes constant speed of all flights through
all lanes. For example, to avoid potential collisions with other aircraft
or obstacles, speed adjustments are made to maintain safe distances
or to avoid severe turbulence, speed is adjusted to reduce the impact
of weather disturbances. To manage this kind of situation it is neces-
sary to make a simple change for the predicate speed(f,s) into
speed(f,s,(x,y)), where f flies at speed s through the lane
(x,y). At this point, Listing 1 subsumes a small variation for the
rules that are necessary for estimated time of arrival. Listing 2 shows
what is necessary to manage variable speed. In particular, the change
is made only for for the predicate speed(F,S,(X,Y)).

Listing 2. ASP-based encoding of the SD problem with variable speed.
9 e t a ( F , Y, T ) : − s t p o i n t ( F , X, Ti ) , speed ( F , S , ( X,Y) ) ,

10 l a n e ( F , X,Y) , l e n g t h ( ( X,Y) ,D) , T=( Ti +(D/ S ) ) .
11 e t a ( F , Y, T ) : − e t a ( F , X, Ti ) , speed ( F , S , ( X,Y) ) ,
12 l a n e ( F , X,Y) , l e n g t h ( ( X,Y) ,D) , T=( Ti +(D/ S ) ) .

A simple ASP solution, with minimal headway h = 1, is given
in the following Listing 3. There are a total of five scheduling plans,
one for each answer set. We only show the first and the last because
of space limitations. There is information on the route of the flights
f1, f2, f3 with the predicate lane and on the safe arrival time at
each node with the stpoint and eta predicates.



Listing 3. Possible solutions of the SD problem
Answer : 1
l a n e ( f1 , 1 , 2 ) l a n e ( f1 , 2 , 3 ) l a n e ( f1 , 3 , 4 )
s t p o i n t ( f1 , 1 , 5 ) e t a ( f1 , 2 , 1 0 ) e t a ( f1 , 3 , 1 5 ) e t a ( f1 , 4 , 2 0 )

l a n e ( f2 , 1 , 2 ) l a n e ( f2 , 2 , 3 ) l a n e ( f2 , 3 , 4 )
s t p o i n t ( f2 , 1 , 2 ) e t a ( f2 , 2 , 5 ) e t a ( f2 , 3 , 8 ) e t a ( f2 , 4 , 1 1 )

l a n e ( f3 , 1 , 2 ) l a n e ( f3 , 2 , 3 ) l a n e ( f3 , 3 , 4 )
s t p o i n t ( f3 , 1 , 4 ) e t a ( f3 , 2 , 9 ) e t a ( f3 , 3 , 1 4 ) e t a ( f3 , 4 , 1 9 )

. . .

Answer : 5
l a n e ( f1 , 1 , 2 ) l a n e ( f1 , 2 , 3 ) l a n e ( f1 , 3 , 4 )
s t p o i n t ( f1 , 1 , 4 ) e t a ( f1 , 2 , 9 ) e t a ( f1 , 3 , 1 4 ) e t a ( f1 , 4 , 1 9 )

l a n e ( f2 , 1 , 2 ) l a n e ( f2 , 2 , 3 ) l a n e ( f2 , 3 , 4 )
s t p o i n t ( f2 , 1 , 2 ) e t a ( f2 , 2 , 5 ) e t a ( f2 , 3 , 8 ) e t a ( f2 , 4 , 1 1 )

l a n e ( f3 , 1 , 2 ) l a n e ( f3 , 2 , 3 ) l a n e ( f3 , 3 , 4 )
s t p o i n t ( f3 , 1 , 3 ) e t a ( f3 , 2 , 8 ) e t a ( f3 , 3 , 1 3 ) e t a ( f3 , 4 , 1 8 )

Listing 4 explains the delay optimization process. The rule in
Line 1 computes the delay delay(F,D) of a flight F as the ab-
solute difference between the actual launch time T and the earliest
requested launch time E. Line 2 is a sum of all the delays in each
flight. Finally, Line 4 gives the best scheduled plan based on the min-
imal delay of the entire set of flights. Thus, the best scheduled plan
of Listing 3 is Answer 5 because sum_delay(3) is the smallest
value among all the answer sets. The graphical representation of the
solution is shown in Figure 3.

Listing 4. Delay optimization
1 d e l a y ( F ,D) : − f l i g h t ( F ) , s t p o i n t ( F , X, T ) ,
2 r e q u e s t e d ( F , E , L ) , D=T−E .
3 sum_delay ( Sd ) : − Sd = #sum{D : f l i g h t ( F ) , d e l a y ( F ,D) } .
4

5 # minimize {Sd : sum_delay ( Sd ) } .
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Figure 3. STDL representation of answer 5. f1 is highlighted in blue, f2
in red and f3 in green

6 Evaluation
This section presents the experimental results obtained for the three
presented use cases under three UAM network topologies. The SD
problem instances are solved with the ASP encoding presented in
Section 5 and also with the Constraint Programming (CP) approach
(available only in the Supplementary Material1 for reasons of space)
for comparison purposes. We first present the experimental design,
that is, the test instances and the experimental setup, including the
software used and the parameters chosen.

6.1 Test instances

We consider three UAM network topologies, illustrated in Figure 4.
These represent different types of layout that might be encountered
in future UAM cases [5]:
1 https://figshare.com/s/8bc4a9a1eb0f2513ed56

• Intracity/sub-urban, focuses on air-based transportation within a
city’s core, addressing urban congestion and enabling rapid point-
to-point mobility. Connecting suburbs to urban cores or other sub-
urbs, extending transit reach and reducing reliance on highways.

• Intercity, focuses on air-based transportation between cities or ma-
jor regional hubs, filling gaps between traditional ground transit
and commercial aviation.

• Airport shuttle, transporting passengers between airports and ur-
ban centers, nearby cities, or transit hubs. This use case targets
time-sensitive travellers seeking to bypass ground congestion and
streamline airport access.

These topologies are modelled as directed graphs, where ground
nodes (vertiport or vertistop) are coloured in red, while blue nodes
represent waypoints up in the air. Figure 4 (a) represents a single city
with multiple stops that connects the city center with suburban areas
like a “subway in the sky”. Figure 4 (b) represents different cities
that are connected, and Figure 4 (c) represents an airport (node 1)
that serves multiple cities.

6.2 Experimental setup

All experiments were run on a laptop computer with Ubuntu 20.04.4,
AMD Ryzen 5 3500U @ 2.10 GHz and 8GB RAM. The Clingo ASP
solver and Minizinc for CP (Gecode solver) were used with default
solving parameters only the timeout has been set to 900 seconds (15
minutes). The evaluation focuses on efficiency (time and memory
requirements), as well as effectiveness (ability to find a suitable plan
to schedule flights). Specifically, we define the following research
question (RQs). RQ1) How scalable is ASP by varying the number
of flights? RQ2) How efficient is the ASP approach compared to the
CP approach?

To answer the RQs, we evaluated the encodings for the three air
network topologies. In the absence of public datasets used as bench-
marks, we were forced to generate data for the three layouts (avail-
able in the Supplementary Material). We implemented an ASP-based
data generator for this purpose. The launch interval requested for
each flight has been chosen to follow a uniform distribution given
a set of parameters such as the time horizon and min-max launch in-
terval size. The Supplementary Material explains how the data were
generated. We assume that the flight departure occurs at the begin-
ning of the minute. We consider vehicle speed expressed in m/s,
time and headway in minutes and lane length in m.

6.3 Results and analysis

In the following section, we discuss the experimental results of each
RQ. We evaluate and discuss the proposed approach, varying the dif-
ferent parameters of the problem to understand the time and space
requirements. The evaluation of our approach is based on analysing
its efficiency through scalability tests by increasing the number of
flights to be scheduled. These two dimensions are also addressed by
comparing ASP with CP in order to understand the advantages and
disadvantages of the two approaches.

Figure 5 shows the results obtained by varying the number of
flights (tabular results can be found in the Supplementary Mate-
rial). For this evaluation, the number of flights was increased from
15 to 400 over a 6-hour time horizon. The minimum headway is 1
minute with a required launch interval size ranging between 5 and
15 minutes. The Figure shows the time and memory requirements
for the two approaches, ASP and CP, varying the number of flights
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Figure 4. Air network topologies

in three scenarios: airport shuttle, intercity and intracity/sub-urban.
When the line in the graph drops dramatically, it means that an out-
of-memory occurred during the computation. ASP generally demon-
strates greater efficiency in terms of execution time and memory con-
sumption up to a certain number of flights. However, it struggles with
very high numbers of flights (from 300 on), often exceeding the time
limit or running out of memory. Conversely, CP tends to require more
time and less memory compared to ASP and faces significant chal-
lenges with small numbers of flights (from 75 in the intercity sce-
nario), frequently exceeding the time limit or running out of memory
earlier than ASP. Overall, ASP appears to be more scalable and effi-
cient in time while CP exhibits a more consistent memory usage but
struggles significantly with the execution time as the problem com-
plexity increases.

ASP is generally more efficient in terms of execution time for
smaller problem sizes. However, as the problem size increases, ASP
struggles to find the optimal solution within the memory limit, espe-
cially for higher numbers of flights. CP tends to require significantly
more time to find the optimal solution compared to ASP, even for
smaller problem sizes. CP consistently hits the time limit for a larger
number of flights. Memory consumption remains relatively stable
across different problem sizes. CP manages memory usage better
than ASP, even though it struggles with execution time.

7 Conclusions

To the best of our knowledge, this is the first ASP-based formula-
tion for Strategic Deconfliction (SD) in UAM. We define a set of
conditions to ensure separation, and use ASP to model the airspace
topology, drone fleet, and the SD problem itself. ASP offers key ad-
vantages: ease of modeling, support for complex combinatorial opti-
mization, and adaptability to changing requirements. Our model sup-
ports realistic UAM scenarios and provides insight into the strengths
and limitations of ASP and CP. ASP shows superior execution time
for small to medium problem sizes but struggles with memory usage
as complexity increases. In contrast, CP maintains stable memory
consumption but often fails to meet time constraints, even on smaller
instances. This comparison highlights the trade-off between time effi-
ciency and memory stability in logic and constraint based approaches
to SD.

Further evaluation of the proposed approach is still required. In
particular, scalability with respect to increasingly complex scenar-
ios – characterized by larger and denser graph topologies in terms of
nodes and edges – remains an open dimension yet to be addressed.
Future works, to improve the limitations encountered, can go in sev-

eral directions. First, we intend to investigate the development of hy-
brid models that combine the strengths of both ASP and CP. Second,
it could be interesting to explore advanced optimization techniques
to improve the scalability, particularly for larger problem sizes. Tech-
niques such as heuristic methods, parallel processing, and memory
optimization could be considered. Finally, we plan to enhance the un-
derlying encodings of both ASP and CP to reduce execution time and
memory consumption. This could involve refining the search strate-
gies.
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