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Abstract. Traffic plays a crucial role in modern life, influencing
economy, public safety, environmental health, and overall quality of
life. As cities grow and transportation networks become more com-
plex, urban planning and monitoring become an even more difficult
task. For this reason, extensive sensor networks (including smart
cameras and inductive loops) are deployed across road infrastruc-
tures to collect valuable data on a continuous basis. Real-world traffic
data is highly dynamic and complex, which makes accurate under-
standing, timely and meaningful forecasting, and actionable moni-
toring of traffic behaviour a significant challenge. This paper pro-
poses a neuro-symbolic workflow for lightweight, real-time traffic
anomaly detection, designed to handle diverse traffic conditions ef-
fectively. The approach consists of four key components: 1) a dis-
cretisation workflow allowing to partition historical multivariate time
series into a limited set of interpretable traffic states; 2) a neural de-
tection model allowing real-time identification (detection) of traffic
states from newly incoming streaming traffic data; 3) a parametrised
family of context-specific Markov chains allowing to capture state
transition behaviour under specific conditions, e.g., location or time
period of interest; 4) a decision logic allowing to identify anomalous
traffic behaviour using the Jensen-Shannon divergence between the
detected and predicted state probabilities. The proposed approach is
validated in two distinct case studies: a dense urban traffic corridor
in Brussels, Belgium, and a large-scale highway network in the San
Francisco Bay Area, USA. While the Brussels dataset offers fine-
grained temporal data over an extended period, the San Francisco
dataset covers a vast number of monitored locations. The results
demonstrate the effectiveness of our method in identifying anoma-
lous traffic behaviour, providing valuable insights for traffic manage-
ment and decision-making.

1 Introduction
Nowadays, a lot of streaming data is collected from complex real-
world phenomena and machinery, allowing to monitor production
processes, industrial assets operating remotely in the field or even
complete infrastructures. Such streaming data is very dynamic in na-
ture and complex in terms of multitude of parameters, number of as-
sets, and time granularity. The evolution and dynamics of such com-
plex data depends on a multitude of factors, often interdependent and
influencing each other. Many of those factors, e.g., technical con-
figurations, diverse operating contexts, varying environment condi-
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tions, or human activities, are difficult to monitor, model and predict.
Therefore, it could be beneficial to determine for a context of inter-
est (e.g., location or specific moment in time) whether the monitored
phenomenon is behaving/operating as expected or whether there is
an anomalous trend, which requires attention and mitigation.

Traffic serves as an ideal playground to study and explore such
complex real-world phenomena. It represents a network of intercon-
nected roads with highly varying temporal and spatial dynamics. For
instance, while some areas exhibit similar traffic patterns, others dif-
fer substantially due to factors such as the type of traffic (e.g., leisure,
shopping, commuting), the nature of the area (e.g., rural, urban), and
the infrastructure (e.g., bending road, speed bump, low speed limit).
These variations make it challenging to characterise ’normal’ be-
haviour in an interpretable and scalable manner, making the identifi-
cation of anomalies more challenging. The latter might be extremely
relevant for the involved stakeholders, allowing them to better under-
stand emerging trends and take informed actions.

This paper proposes a neuro-symbolic workflow for lightweight,
real-time traffic anomaly detection. Designed for versatility, our ap-
proach adapts seamlessly to a wide range of scenarios, accommodat-
ing variations in traffic types and data availability (e.g., number of
parameters, monitored locations, sampling frequency, and historical
data volume). To demonstrate this flexibility, the approach is vali-
dated in two distinct traffic use cases. The first examines a hectic
and dense urban traffic axis in Brussels, Belgium, near the city cen-
ter. The second focuses on highways in the San Francisco Bay Area,
USA. Note that while the American case covers a significantly larger
number of monitored locations, the Brussels dataset provides more
granular temporal data with richer parametrization over an extended
observation period. Our validation results demonstrate that the neuro-
symbolic workflow effectively identifies traffic anomalies across dif-
ferent contexts, providing valuable insights for traffic management
and decision-making. Moreover, the lightweight nature of our ap-
proach makes it well-suited for real-time deployment, enabling effi-
cient and scalable monitoring of complex traffic systems.

2 Related Work
2.1 Time Series Anomaly Detection

Time series data often has repetitive underlying patterns (e.g., daily
behaviour). Consequently, these patterns can be discovered using ap-
propriate decomposition techniques, such as non negative matrix fac-
torisation, or tensor rank decomposition, and be interpreted as build-



ing blocks to (approximately) reconstruct parts of the time series. In
anomalous situations, the time series will not be able to properly be
reconstructed using the known underlying patterns, so, such anoma-
lies can be detected by a high reconstruction error [19, 11]. Li et
al. [12] go even a step further by considering a coupled scalable
Bayesian robust tensor factorisation model. Specifically, they cou-
ple the reconstruction error of multiple variables, using an Nth-order
tensor for each variable (instead of the typical two-way matrix). In
their traffic use-case, they illustrate how to capture not only repeti-
tive daily patterns, but also weekday and whole week patterns, and
even patterns across different locations. However, best results are ob-
tained using only a third-order tensor, ignoring the interactions across
locations, which they attribute to the presence of off-ramps between
locations, making the spatial relation not fixed.

Another common way to do anomaly detection on time series is
to use symbolic time series analysis (STSA). STSA is a technique to
simplify complex data into a sequence of symbols (using any possi-
ble partitioning technique such as uniform partitioning, maximum-
entropy partitioning, and K-means), enabling easier detection of pat-
terns, trends, and anomalies. Ghalyan et al. [8] propose an approach
to detect anomalies using STSA by extracting state transition prob-
abilities for optimally dimensioned time segments, and use these as
features of each time window, allowing to classify anomalous vs.
normal behaviour.

In this paper, we develop a lightweight anomaly detection mech-
anism relying on the transformation of multivariate time series into
sequences of symbols. A finite set of humanly-interpretable traffic
states (e.g., congestion, free-flow, traffic build-up) is extracted, in the
absence of any ground truth, following a human-in-the-loop cluster-
ing strategy we proposed in [6].

2.2 Anomalies in Traffic

Anomaly detection is the approach of identifying anomalous be-
haviour. Although one might expect this definition to be satisfying at
first sight, it is not unambiguous. Depending on the application do-
main, an anomaly can be interpreted different. In the use case of this
paper, traffic, for example. Anomalies can be interpreted as traffic
congestion, which is an unwanted situation in traffic that is prefer-
ably avoided. [17]. Alternatively, Li et al. [12] propose an approach
to detect non-recurrent traffic congestion. With this approach, the
daily (recurrent) traffic congestion during rush hours is considered
expected behaviour. The latter allows to focus only on the situations
that have the most impact on drivers: the unexpected congestion. A
third alternative, which we adopt in this paper, is to detect all un-
expected behaviour, regardless of the type of unexpected behaviour.
In contrast to the previous two approaches, this method also aims to
identify traffic events that lead to reduced traffic flow, such as holi-
days or road obstructions. This allows for a broader perspective on
unexpected traffic behaviour, providing valuable insights for traffic
stakeholders.

2.3 Neuro-Symbolic Modelling

Neuro-symbolic modelling integrates neural, logical, and probabilis-
tic paradigms from artificial intelligence, creating unified frame-
works/workflows that leverage the strengths of these diverse method-
ologies. By combining the principles of logic and neural networks,
both of which inherently incorporate probability theory, neuro-
symbolic systems enable high-level reasoning to coexist with low-
level perception [10]. This synthesis overcomes the limitations of

purely deep learning-based approaches, unlocking novel capabilities
in AI [16].

The landscape of neuro-symbolic architectures is diverse, but two
major categories stand out: architectures that use logic as a regular-
ization mechanism within neural networks, and those that enhance
logical reasoning methods with neural components. For instance,
Hammoudeh et al. [9] demonstrate how neuro-symbolic modelling
can integrate physics-based knowledge. They propose a method to
predict the power of marine cargo vessels by combining a physics-
informed symbolic module with a neural network, achieving perfor-
mance that surpasses the state-of-the-art. Similarly, Capogrosso et
al. [2] utilise a neuro-symbolic framework to enrich smart manu-
facturing. Their approach embeds structured, formal knowledge into
industrial processes, by incorporating industrial ontologies within a
diffusion model, showcasing the versatility of neuro-symbolic sys-
tems.

The workflow proposed in this paper leverages the potential of
two fundamentally different modelling paradigms. A powerful, yet
black-box, neural traffic state detection model is combined with a
lightweight probabilistic model, composed of sequentially linked
Markov chains, aiming at state transition prediction in a context-
sensitive way. This decoupled architecture not only enhances inter-
pretability but also enables efficient updates in response to concept
drift, ensuring adaptability to evolving traffic patterns. By linking
black-box neural models with structured probabilistic reasoning, our
approach aligns with the core principles of neuro-symbolic AI, fur-
ther demonstrating its potential in dynamic, real-world applications.

3 Methods
3.1 Modelling State Transitions: Parametrised

Markov Chains

In the mobility domain, time series data often includes parameters
such as average speed, vehicle flow, and road occupancy across mul-
tiple locations. This fine-grained, multivariate time series data, com-
monly found in industrial settings, can be challenging to interpret for
humans and difficult to model accurately with algorithms. To address
this, we proposed in [6] the extraction of a finite set of humanly-
interpretable traffic states for the purpose of facilitating the annota-
tion of mobility data with meaningful labels such as congestion, free-
flow, traffic build-up, etc. These traffic states provide a symbolic rep-
resentation for each time window at each location, effectively sum-
marizing the traffic situation using a limited set of symbols with clear
semantic meaning, thus enhancing human interpretability.

Transforming multivariate time series into sequences of symbols,
analogous to a DNA sequence, unlocks a range of opportunities to in-
tegrate multiple complementary approaches for modelling state tran-
sition behaviour. For instance, representing a time series as a se-
quence of N semantically interpretable states S1, S2, . . . , SN , al-
lows for modelling state transition probabilities using Markov chains.
However, traffic dynamics, especially in urban areas, do not strictly
follow Markovian logic. Traffic patterns are inherently periodic, in-
fluenced by daily, weekly, and seasonal human routines. As a result,
state transition probabilities vary throughout the day and across dif-
ferent time periods. To account for this periodicity, we introduced in
[4] the concept of a family of parametrised Markov chains (M ):

M =
{

Ms,κ,tstart,λ|s, κ ∈ N>0; tstart ∈ [Tmin;Tmax);λ ∈ Λ
}
,

(1)
where each transition probability matrix Ms,κ,tstart,λ (of size N ×
N ) is uniquely defined by:



• Granularity s: The time step resolution for transition probability
estimation.

• Start time tstart: The time reference point within the range
[Tmin, Tmax] (e.g., hours of the day or months of the year).

• Time frame coverage κ: The period [tstart, tstop] used to esti-
mate transition probabilities, with tstop = tstart + s · κ.

• Context λ ∈ Λ: A unique temporal and/or spatial setting, such as
a specific group of locations or time period.

The proposed family of Markov chains (M ) provides a flexible
framework for analysing state transitions across varying temporal
and spatial contexts. By associating each Markov chain with a spe-
cific context λ, we capture state transition behaviour unique to dif-
ferent locations, weekdays, or time periods. This enables a detailed
analysis of periodic traffic dynamics and localized traffic bottlenecks.
Moreover, the approach is computationally efficient, scaling linearly
with data size (O(n)), making it well-suited for large-scale appli-
cations. Moreover, Markov chains require relative small amounts of
data (e.g., compared to deep models), allowing for fast retraining in
case of concept drift. An important advantage of Markov chains is
their inherent interpretability, making them highly explainable com-
pared to complex deep learning models. Their transition probabilities
offer clear insights into how traffic states evolve over time, enabling
domain experts and traffic operators to analyse and understand mo-
bility patterns more intuitively.

3.2 Neuro-Symbolic Workflow for Anomaly Detection

We proposed in [7], a novel hybrid modelling framework lever-
aging multiple data representations (temporal, time-frequency and
symbolic) with the aim of forecasting traffic progression in terms
of humanly-explicable state transitions. Three distinct modelling
paradigms have been explored: neural, neural-to-symbolic, and
symbolic-to-neural, and their potential to capture and forecast traf-
fic dynamics has been convincingly demonstrated on real-world mo-
bility data. The neural-to-symbolic approach is using in a sequential
fashion a single deep learning state detection model, trained on the
temporal representation and followed by a family of Markov chains
managing the state prediction for different forecast horizons. This
sequential neuro-symbolic workflow is being creatively adapted and
enhanced in this work for the purpose of anomaly detection, as out-
lined in detail below and depicted in Figure 1.

The proposed neuro-symbolic approach consists of four key com-
ponents applied in a sequential fashion: 1) extraction of characteris-
tic traffic states: a discretisation workflow allowing to partition his-
torical multivariate time series into a limited set of interpretable traf-
fic states; 2) neural traffic state detection: a neural detection model
allowing real-time identification (detection) of traffic states from
newly incoming streaming traffic data; 3) symbolic state transition
prediction: a parametrised family of context-specific Markov chains
allowing to capture state transition behaviour under specific condi-
tions, e.g., location or time period of interest; 4) anomaly detection: a
decision logic allowing to identify anomalous traffic behaviour using
the Jensen-Shannon divergence between the detected and predicted
state probabilities.

Consider the availability of N traffic states S1, S2, . . . , SN , which
are used to annotate/label the available historical time series data and
subsequently train a neural state detection model D . The model in-
put is composed of time fragments extracted from the historical mul-
tivariate time series, while the output at any time ti (i ∈ N>0) is a
vector of soft labels ŷi of size N , expressing the confidence of being
in one of the possible states at time ti.

Next, the symbolic step of our workflow, based on the parametrised
Markov chains, uses the detected vector at the previous time step
ti−1 = ti − s to predict the expected state occurring at the present
time step ti, i.e., ŷi−1, can be multiplied with the state transition ma-
trix Ms,κ,ti−s,λ of size N ×N to generate a vector of expected (i.e.,
predicted) state probabilities ẑi at current time ti. Subsequently, the
distance between vectors ŷi and ẑi generated by the neural and the
neuro-symbolic steps respectively, can be calculated using metrics
such as Minkowski distance, cosine distance, or Jensen–Shannon di-
vergence [13]. Such distance quantifies the deviation between the ob-
served and expected behaviour for the given context at that moment
in time, serving as an anomaly score.

Figure 1: Overview of the anomaly detection workflow.

The so-generated anomaly scores serve as a continuous monitoring
mechanism, enabling dynamic thresholding strategies to flag anoma-
lies based on a streaming data in real-time. This approach allows for
adaptive anomaly detection, offering traffic stakeholders greater flex-
ibility in distinguishing between normal fluctuations and significant
deviations requiring intervention.

3.3 Dealing with High Spatial Variability

Mobility is a complex system where road segments are spatially in-
terconnected and influence each other. Data from road networks typ-
ically encompasses various types of spatial contexts (e.g., intersec-
tions vs. straight roads) and varying traffic usage (e.g., morning com-
muting vs. afternoon shopping traffic). Developing location-specific
models (e.g., multiple families of parametrised Markov chains from
Section 3.1) can potentially capture the unique characteristics of each
spatial context. Unfortunately, in case of large number of spatial con-
texts with diverse traffic dynamics, this approach requires the con-
struction and maintenance of a large number of models, each trained
on a limited subset of data, which may hinder generalizability. Al-
ternatively, one may opt for identifying groups of spatial contexts
with similar traffic behaviour, enabling the development of tailored
models that leverage shared traffic patterns while maintaining adapt-
ability to local conditions.

Different spatial contexts, i.e., sections of the road network with
available sensor data, can be grouped based on similar traffic dynam-
ics. This requires suitable representations of these contexts that ac-
curately capture the most discriminating traffic characteristics. Given
the repetitive nature of traffic, such representations can benefit from
comparison between recurring time periods as days, weeks, months,
etc. which allows to identify trends and seasonality. We developed



in [5] a general visual analytics methodology that allows convert-
ing time series data into a series of circular heat maps covering re-
curring time periods. More concretely, the methodology allows to
construct temporal fingerprints for each spatial context that capture
both daily and weekly patterns. The time series are divided into
sufficiently granular (e.g., 15-minute or 1-hour intervals) segments
and subsequently, relevant traffic features, such as the median speed
or average road density, are derived per time segment and aggre-
gated across days and weeks, respectively. This results into two-
dimensional (days vs. time segments) weekly fingerprints, which
compactly capture the characteristic weekly behaviour for each spa-
tial context. In addition, these fingerprints can be visualised using
circular heatmaps, as illustrated in Figure 2, offering very insightful
representation of traffic behaviour at a glance. For instance, as illus-
trated in Figure 2, different locations exhibit substantially different
traffic patterns. The leftmost location shows a broad evening peak
with lower median speed due to heavy traffic, while the middle lo-
cation has a sharp, narrow morning peak, indicating a short spike in
traffic density.

Figure 2: Circular weekly fingerprints of the median speed for three
locations from the PeMS-Bay dataset.

Next to the possibility to visually examine and compare these fin-
gerprints, the pairwise proximity between them can also be calcu-
lated. For instance, employing Pearson correlation[14] or other suit-
able distance metrics will allow to partition the different fingerprints,
i.e., spatial contexts, into clusters of contexts exhibiting similar tem-
poral behaviour. This approach substantially reduces spatial variabil-
ity and creates more homogeneous groups.

4 Validation on Real-World Mobility Data

4.1 Use Cases

Our neuro-symbolic anomaly detection workflow is validated on two
distinct use cases. The first use case, referred below as Brussels use
case, is based on a dataset consisting of highly granular traffic mea-
surements from a limited number of locations. Specifically, it covers
16 locations along the Brussels small ring, Belgium. The dataset is
composed of minute-by-minute records of average velocity, vehicle
flow, and road occupancy over more than two years (16/01/2020 -
04/05/2022). The second use case, referred as PeMS-Bay use case,
utilises the widely known PeMS-Bay dataset, which includes aver-
age velocity data recorded every 5 minutes over a 6-month period
(01/01/2017 - 30/06/2017) for 325 highway locations near the San
Francisco Bay Area, USA. Note that, while the first use case dataset
is concerned with a very dense urban mobility infrastructure and
deals with challenges related to modelling highly granular (temporal)
data with a rich feature set, the second use case dataset is collected
from a wide highway road network and thus confronted with scala-
bility issues due to its extensive spatial coverage. Moreover, the two
use cases are based in two different continents, and may therefore
exhibit fundamentally different traffic dynamics due to variations in
infrastructure, driving behaviour, and regulatory policies.

4.2 Traffic States

For each of the two use cases 6 distinct traffic states are derived.
For the Brussels use case, we build upon the validated traffic states
established in [6]. These states were derived through an extensive
human-in-the-loop clustering approach, ensuring interpretability and
alignment with traffic theory, as confirmed by domain experts. Con-
cretely, the available time series data is labelled with one of 6 traf-
fic states (free-flow, traffic build-up, traffic intensity reduction, stable
non-saturated traffic, variable non-saturated traffic, or congested traf-
fic) at 15-minute intervals.

The PeMS-Bay dataset has a coarser time granularity of 5 minutes
(compared to 1 minute for the Brussels dataset) and includes only a
single measurement of average velocity (as opposed to average ve-
locity, vehicle flow, and road occupancy for the Brussels dataset).
Temporal features over 1-hour time windows are extracted, i.e., ex-
tracted from a parameter vector of 12 values, rather than 3 parameter
vectors of 15 values used in the Brussels dataset. For the purpose of
further enhancing the feature set granularity, the 1-hour windows are
generated in a rolling-window fashion, providing new features every
5 minutes. After normalisation and scaling the features, majority vot-
ing using a diverse set of cluster validation measures (silhouette in-
dex [15], Calinski Harabasz index [1], Davies Bouldin index [3] and
elbow index [18]) identified an optimal number of 6 clusters (traf-
fic states) using k-means clustering. Although the number of clusters
matches the one of the Brussels use case, their semantic meaning is
not necessarily the same. The difference arises from the longer time
period they represent (1 hour vs. 15 minutes) and the distinct geo-
graphic characteristics of the dataset. Unfortunately, for the PeMS-
Bay dataset we cannot rely on support from traffic domain experts to
assign a semantic meaning to each state. We can employ some visual
analytics approaches instead to evaluate their potential to capture dis-
tinct traffic behaviour. For instance, the state transitions represented
as label maps for two contrasting locations can be examined in Fig-
ure 3. Note that Figure 3a depicts a location with a clear morning
rush hour (cluster V and X), while Figure 3b identifies peak traffic in
the afternoon and early evening.

(a) Location 400001. (b) Location 400922.

Figure 3: Label map of traffic states at two locations in PeMS-Bay.

4.3 Models

Based on our neuro-symbolic workflow, two types of models must be
developed, as outlined further in this section. For this, both datasets
are divided into three subsets: 80% for training, 10% for validation,
and 10% for testing. To prevent data leakage and ensure temporal
consistency, all data points from a given day are assigned entirely to
one of these three sets.



4.3.1 Neural State Detection Models

For both use cases, a state detection GRU model is trained using the
training and validation data. Note that for each of the use case, 6
distinct traffic states are derived, i.e., the target variable for the state
detection model is a probability vector of 6 values, representing the
model’s confidence in each possible traffic state.

For the Brussels use case a retrospective time window of 2 hours is
considered, while PeMS-Bays dataset only considers a 1-hour time
window as input. Despite being trained on a single parameter (vehicle
speed), the PeMS-Bay model still achieves an accuracy of 73% and
a categorical cross-entropy loss of 0.61 on the test set. This contrasts
with the Brussels case study, where the model attained 86% accuracy
and a loss of 0.33 thanks to the richer input of three parameters. The
model architectures used can be consulted in Sections A and B.

4.3.2 Parametrised Markov Chain Models

The next building block of our anomaly detection approach are the
(symbolic) families of Markov chains. For both use cases, the train-
ing and validation datasets are pooled together and used for training
the families of Markov chains. For each use case, a family of time-
aware models is constructed for each considered location. Practically,
the days are segmented in time intervals and for each segment a sep-
arated model is trained.

In the Brussels case study, only 16 locations are considered, and
the days are segmented into intervals of 15 min. Thus, for each
location a family of 96 time-aware models is derived, where each
model corresponds to a specific 15-minute time interval. To enable
location-specific models while enhancing robustness, the historical
traffic state transitions observed within that interval, along with data
from the preceding and following hour, are incorporated from the
training dataset.

Deriving location-specific families in the PeMS-Bay case would
result in 325 families, which might suffer from low accuracies (since
only 6 months of data is available) and contain a lot of redundancy
(due to the high similarities across certain locations). For this reason,
applying the approach discussed in Section 3.3, the total of 325 lo-
cations are partitioned into 18 groups exhibiting similar behaviour.
The latter is done by first extracting weekly patterns for each loca-
tion, as visualised in Figure 2. Subsequently, the pairwise Pearson
correlation is computed between these fingerprints and the complete
linkage algorithm is used to obtain the final partition. For each group,
a family of 288 Markov chains is constructed to model traffic state
transitions at every 5-minute interval throughout the day, based on
the training data. To enhance robustness, each transition matrix is
computed using a 65-minute time window centred around the target
timestamp, incorporating data from 30 minutes before to 30 minutes
after.

4.4 From State Detection to Anomaly Detection

Although the Brussels and PeMS-Bay use cases and associated
datasets differ significantly, the neuro-symbolic anomaly detection
workflow as proposed in Section 3.2 is highly adaptable and can
be flexibly tailored to different traffic environments and data char-
acteristics. The key aspects remain the same for both use cases. Con-
cretely, for each location and each newly arriving time window of
streaming data, the following entities are computed in real time:

• Detected state probability distributions: the GRU model takes as
input a retrospective time window (3 x 15 matrix the for Brus-

sels use case or vector of size 12 for the PeMS-Bay use case) and
outputs a probability distribution over the 6 traffic states;

• Expected state probability distributions: the location-specific and
time-aware Markov chain models estimate the state transition
probabilities for the current time step, taking as input the state
probability distributions produced by the GRU model for the pre-
vious time window;

• Anomaly scores: the Jensen–Shannon divergence between the de-
tected and the expected state probability distributions is computed.

One advantage of using the Jensen–Shannon divergence, instead of
for example the Minkowski distance, is a standardised value range
between 0 and 1. The obtained anomaly scores for the Brussels train-
ing dataset are visualised in Figure 4. Note that the distribution of the
anomaly scores appears to resemble a mixture of two normal distri-
butions rather than a single one. This distinction arises from the very
different traffic conditions during nighttime (which is easier to pre-
dict) and during daytime (which is more variable and challenging to
predict). The red line in Figure 4 denotes the 99th percentile, which
is used in the examples below as the anomaly detection threshold.
Other common statistical methods, as the six-sigma or the 1.5 IQR
(interquartile range), can be also considered for this purpose.

Figure 4: Histogram of the Jensen-Shannon divergence values on the
test set of the Brussels use case. In red, the 99th percentile is indi-
cated.

In Figures 5 and 6, the anomaly scores for the 16 Brussels loca-
tions for two subsequent days, May 11th and 12th of 2021, are de-
picted. Depending on the desired sensitivity of the anomaly detection
algorithm, anomalies can be flagged in several different ways. The
most sensitive option would be to inspect the anomaly score at each
timestamp and flag an anomaly whenever the detection threshold is
surpassed. As it can be observed in the top plot of Figures 5 and 6,
this approach can lead to the identification of numerous anomalies
throughout the day for each location. This can lead to an excessive
number of false positive alarms, which is not ideal for daily use by
traffic operators. A more robust alternative will be to track thresh-
old exceeding with a moving average, which smooths the anomaly
score over a rolling window to prevent false positives caused by
short-lived fluctuations or transient spikes in traffic behaviour. Ap-
plying a 1-hour moving average, as depicted at the middle plot of
Figures 5 and 6, aids in eliminating short-term anomalies, thereby
concentrating on the more severe cases. Note that on May 11th, the
European Commission held a General Affairs Council in Brussels,
while May 12th marked the end of the Ramadan period. It is expected
that both events impacted substantially the regular traffic dynam-
ics in Brussels, as observed and confirmed by the behaviour of the
anomaly scores for these days. For May 11th, the daily evolution of
the anomaly score across almost all locations exhibits several peaks
(Figure 5), indicating that the European Commission event dramati-
cally disturbed the traffic in Brussels on this day. For May 12th, only
one clear anomalous moment is flagged (middle and bottom plot Fig-
ure 6), at Louisa tunnel (LOU_TD1) at 16:15. However, a second
peak is observed at 20:30 for the same location, significantly exceed-
ing the standard deviation range. This peak may be attributed to the



final day of Ramadan, occurring just one hour before sunset and the
fact that there is a mosque in the immediate vicinity of Louisa tunnel.

Figure 5: Evolution of the anomaly score on May 11th 2021, with the
red line identifying the anomaly threshold. Top: anomaly score for
each of the 16 Brussels locations (Hallepoort tunnel in blue); Middle:
anomaly scores with a 1-hour moving average; Bottom: comparison
of Hallepoort tunnel with the same weekdays of the past 2 months.

Figure 6: Evolution of the anomaly score on May 12th 2021, with
the red line identifying the anomaly threshold. Top: anomaly score
for each of the 16 Brussels locations (Louisa tunnel in blue); Middle:
anomaly scores with a 1-hour moving average; Bottom: comparison
of Louisa tunnel with the same weekdays of the past 2 months.

In Figure 7, the location and day with the most anomalies (i.e.,
99% percentile threshold exceedings) for the PeMS-Bay use case is
depicted (May 15th 2017). The anomaly scores of the anomalous lo-
cation are compared against the average anomaly score for each loca-
tion group (top and middle plot Figure 7). Considering the absence of
any background knowledge for this use case, it is hard to validate the
accuracy of the anomaly score behaviour. For the purpose of facili-
tating some interpretability, Figure 8 was generated alternatively. It
depicts the number of anomalies on this specific day for all locations.
In the purple zoomed-in square, three neighbouring locations with a
high concentration of anomalies can be observed. The latter suggests
the presence of an anomalous road segment, potentially caused by
roadworks or a severe accident.

In Figure 9, the anomaly rate evolution when varying the anomaly
score thresholds is depicted for both use cases. The difference of
the anomaly rate evolution observed between the two use cases in-
dicates that threshold selection should be tailored to each specific
case, for example by considering a fixed percentile on a historical
dataset. Moreover, the smoothing effect has a greater impact on the
PeMS-Bay use case (Figure 9(B)), as evidenced by the larger devi-
ation between the blue and grey curve compared to the Brussels use
case (Figure 9(A)). This difference may be due to the higher fre-
quency of anomaly calculations in the PeMS-Bay use case (every 5
minutes, compared to 15-minute intervals in the Brussels use case),

Figure 7: Evolution of the anomaly score on May 15th 2017, with
the red line identifying the anomaly threshold. Top: average anomaly
score for each of the 18 PeMS-Bay groups of locations; Middle:
anomaly scores with a 1-hour moving average; Bottom: comparison
of the most anomalous location (blue line) with the same weekdays
of the past 2 months.

Figure 8: Anomaly rates on May 15th 2017 for each of the PeMS-Bay
locations.

leading to a larger number of values being smoothed.

Figure 9: Percentage of detected anomalies in the test dataset across
all possible threshold values.

5 Industrial Application
This work presents one of the applied outcomes from an industrial
PhD research executed in close collaboration with an industrial part-
ner in the mobility domain. They provided valuable domain exper-
tise, offering insights into our results while also guiding the research
toward practical applications with potential business impact. The
technology readiness level of the proposed methodology is already
quite advanced beyond 5 and its lightweight and interpretable nature
makes it subject of ongoing plans of our industrial partner to embed-
ded in its mobility platform.

6 Conclusion
In this paper, a neuro-symbolic workflow for real-time detection of
non-recurrent traffic anomalies is presented. By decoupling detection
and prediction through a combination of a neural model and sym-
bolic Markov chains, our approach demonstrates flexibility across
diverse traffic environments and data characteristics. The proposed
framework was validated on two distinct case studies, urban traffic



in Brussels and highways in the San Francisco Bay Area, highlight-
ing its adaptability to different spatial scales, temporal granularities,
and feature sets.

Our results demonstrate that combining neural state detection with
context-aware symbolic prediction is highly effective for anomaly
detection. This approach captures short-term fluctuations while in-
corporating long-term traffic dynamics, enabling real-time monitor-
ing with enhanced interpretability. Its flexibility and efficiency make
it particularly well-suited for deployment in intelligent traffic man-
agement systems.
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A State Detection Model Architecture Brussels Use
Case

Below the architecture of the GRU model for traffic state detection
in the Brussels dataset is provided.

_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
input_1 (InputLayer) [(None, 120, 3)] 0

gru (GRU) (None, 120, 64) 13248

gru_1 (GRU) (None, 64) 24960

dropout (Dropout) (None, 64) 0

dense (Dense) (None, 32) 2080

y1_output (Dense) (None, 6) 198

=================================================================
Total params: 40,486
Trainable params: 40,486
Non-trainable params: 0
_________________________________________________________________

B State Detection Model Architecture PeMS-Bay
Use Case

Below the architecture of the GRU model for traffic state detection
in the PeMS-Bay dataset is provided.

__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to

==================================================================================================
input_3 (InputLayer) [(None, 12, 1)] 0 []

gru_4 (GRU) [(None, 12, 64), 12864 [’input_3[0][0]’]
(None, 64)]

dropout_3 (Dropout) (None, 12, 64) 0 [’gru_4[0][0]’]

gru_5 (GRU) [(None, 64), 24960 [’dropout_3[0][0]’]
(None, 64)]

batch_normalization_2 (BatchNo (None, 64) 256 [’gru_5[0][0]’]
rmalization)

concatenate_1 (Concatenate) (None, 192) 0 [’batch_normalization_2[0][0]’,
’gru_4[0][1]’,
’gru_5[0][1]’]

dense_2 (Dense) (None, 32) 6176 [’concatenate_1[0][0]’]

y1_output (Dense) (None, 6) 198 [’dense_2[0][0]’]

==================================================================================================
Total params: 44,454
Trainable params: 44,326
Non-trainable params: 128
__________________________________________________________________________________________________


