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Abstract. Efficient traffic analysis and management are essential
for supporting various stakeholders, enabling the automation of real-
time monitoring, anomaly detection, and strategic planning for urban
and suburban road networks. Manual approaches are impractical due
to the complexity and scale of traffic systems. Automated solutions,
however, must prioritize transparency and interpretability to avoid
reliance on opaque black box models. In complex urban scenarios,
automated reasoning techniques were effective in interpreting traf-
fic patterns, allowing real-time identification of anomalies and haz-
ards, contributing to more informed decision-making. This paper dis-
cusses possible uses of multi-strategy automatic reasoning for traffic
interpretation to build useful support systems for more mindful road
traffic management.

1 Introduction

Effective traffic management is crucial for everyday life in mod-
ern societies. Road crashes represent the 8th leading cause of death
worldwide [1]. Dealing with massive traffic crowds is urgent and es-
sential [29]. Infrastructures have not kept up with the increased traffic
load, but effectively managing traffic on existing roads is more prof-
itable than building new ones [6]. It has also connections with social
issues, pollution and the green economy [40].

Both academia and industry have endeavoured to traffic predic-
tion, analysis, and understanding. The demand for real-time, auto-
mated traffic solutions is increasing, yet the sheer complexity, scale,
and heterogeneity of the data involved make traditional methods in-
sufficient. As such, there is a critical need for advanced AI-based
frameworks capable of dealing with these complexities while pro-
viding actionable, interpretable insights.

Current traffic analysis tools must contend with various data chal-
lenges, often falling within the realm of Big Data [16] and Data Min-
ing [31]. The primary challenges include:

• Volume: The vast number of vehicles results in an enormous
amount of traffic data.
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• Variety: Traffic data comes in multiple forms, from video feeds to
GPS logs, with varying structures and formats.

• Velocity: Traffic data is generated continuously and at a rapid
pace, requiring near-instantaneous processing.

In addition to these general Big Data characteristics, traffic data has
unique traits such as:

• Vinculation: Traffic data streams are highly interconnected;
events like traffic light changes, accidents, or pedestrian move-
ments affect the entire system.

• Validity: The accuracy of traffic data depends heavily on the tech-
nologies used for collection, such as cameras and sensors, which
require regular validation to ensure quality.

Big Data fuels black-box models-the more data available, the more
complex the models can become, improving accuracy but reducing
interpretability. Simpler models (such as linear regression) are inter-
pretable, but may not perform as well on Big Data as deep learning
models. In deep learning, black-box reasoning can be applied. This
refers to AI/ML models in which decision making is not easily inter-
pretable by humans. These models receive input and produce output,
but the internal logic is complex and opaque. To address black box
problems, researchers are developing Explainable AI (XAI) tech-
niques like:

• LIME (Local Interpretable Model-agnostic Explanations)4: Ap-
proximates black box models with simpler, interpretable ones
[27].

• SHAP (SHapley Additive exPlanations)5: Quantifies feature im-
portance [22].

• Decision Trees & Rule-Based Models6: More transparent alterna-
tives [23].

However, all explanations obtained by these methods will always
have some degree of uncertainty. In some areas, including road traf-
fic management, regulatory problems may arise as regulators require
concrete explanations (e.g., insurance companies in the case of a se-
rious accident).

In a more general view, there is a need to develop a comprehen-
sive framework for road traffic analysis that meets the needs of the

4 https://github.com/marcotcr/lime
5 https://github.com/shap/
6 https://github.com/adaa-polsl/RuleXAI



various stakeholders involved in traffic planning, management, safety
and security. Early detection or prediction of traffic problems to facil-
itate proactive measures to prevent or mitigate their impact assumes
a key role in this framework. To ensure reliability and enable users
to make informed decisions, in this paper we will analyze one of the
main characteristics that a traffic management framework must em-
body: Explainability, i.e., the ability to explicitly illustrate the rea-
soning behind each result, offering a full explanation that outlines
the logical steps and relationships among the data that determine the
results. For this task we address the use of explainable automated
multi-strategy reasoning for traffic understanding as a module of a
traffic management tool. The rest of this paper is organised as fol-
lows. After discussing related work in the next section, we describe
the proposed module in Section 3, while in Section 4 we describe and
discuss the application of the module to a sample scenario. Finally,
we provide the conclusions and future work directions in Section 5.

2 Related Works

In the urban traffic setting, anomalies may vary according to specific
scenarios: an anomaly may refer to a specific vehicle or a specific
dangerous situation (e.g. accidents, fires, congestion).

A common need for traffic management is the prevention, or at
least forecasting, of accidents. Many factors come into play when
dealing with traffic accidents, such as age [34] or environmental fac-
tors [15]; however, most works do not take these factors into account.
The possibility of taking action against road accidents can have a
sort of big impact on security and health, but also from an economic
point of view. In 2014 Australia was estimated to spend $27 billion
on traffic analysis [13]. This investment encompasses various costs
related to road crashes, including the lifetime care cost of young
drivers involved in crashes, indicating a broad approach to traffic
management that spans from immediate accident response to long-
term care and prevention strategies. For example, the work by Low
and Odgers discusses the rethinking of the cost of traffic congestion
and includes lessons from Melbourne’s City Link Toll Roads, indi-
rectly touching on the broader economic implications of traffic man-
agement [21]. Similarly, Gordon’s analysis on applying benefit-cost
analysis to Intelligent Transportation Systems (ITS) in the Australian
context suggests a comprehensive view on managing traffic through
advanced technological systems [12]. Furthermore, the analysis by
Buckis, Lenné, and Fitzharris underscores the economic dimensions
of traffic accidents, highlighting the extensive financial impact these
incidents have on society [3].

Traffic understanding resides in the Big Data domain; hence, the
format of data available varies. As an example, in many scenarios,
the detection of congested areas or accidents in a city requires the
use of GPS. D’Andrea et al. [5] proposed a segment traffic classi-
fication to distinguish dangerous (or suspect) areas. More recently,
satellite video-based solutions have been gaining momentum. Zhang
et al. [39] proposed strategies to recognise a vehicle through Com-
puter Vision (CV) techniques and an improvement of the traditional
Adaboost [26].

Following this trend, many applications in the field of traffic un-
derstanding have a visual approach, which is eager to be combined
with embedded Machine Learning[24], using a camera and record-
ing and/or shooting traffic roads. In some applications, the visual ap-
proach is fundamental due to the calibration of instruments based
on vehicle and lane dimensions as in [33]. Understanding of traffic
may be related to the forecasting of traffic in specific areas in some
periods. For this reason, they are mainly modelled with time series

approaches [14].
As Xu et al. [37] showed, mobile traffic and urban traffic are

linked and some strategies can be interchanged between the two do-
mains. Trinh et al. [35] designated a LSTM-based solution to deal
with the typical problem of vanishing gradients, while Feng et al. [7]
went even further by using end-to-end neural networks. Many tech-
niques are also borrowed from the field of Swarm Intelligence [42]
such as Federation-Imitating Learning [38].

Introducing explanations is essential when decisions have a strong
social impact. Given the popularity of neural networks, it is a rel-
evant issue today to introduce explanations in neural-based algo-
rithms, leading to the so-called hyrid models [41].

The extent to which this can work is still under examination and
far from being solved.

The decision about the kind of approach enormously affects the in-
struments to be employed, performance, kinds of explanations, and
costs. Current data analytics approaches revolve around the idea of
using data to characterize and predict traffic risk in order to prescribe
better (safer) routes, driver assignments, rest breaks, etc. With ad-
vances in information technology, it is possible to collect ever more
relevant data, such as comprehensive incident databases, real-time
driving data feeds or relevant factor characteristics [32].

Among the non-explainable solutions, traffic understanding in
videos plays a key role. The technological support is provided by
cameras. Computer vision algorithms allow us to detect relevant
road elements and visualise objects in the scene. Visual multiple
object tracking (VMOT) aims to locate multiple targets of inter-
est, infer their trajectories, and maintain their identities in a video
sequence [17], or in real-time traffic scenarios [18]. Today, many
videos or images recorded are available thanks to visual surveillance
and displays in autonomous vehicles. Santhosh et al. [28] provided a
survey on anomaly detection techniques by taking photos from video
surveillance systems. One of the main points of the detection is repre-
sented by the tracking system. Further applications concern motion
planning in autonomous vehicles. Apart from recordings, one may
find himself surprised by the variety of simulated data that can be
generated with videos.

This opportunity is given by computer games, urban visualisation,
and urban planning simulation in autonomous driving settings. The
design process has been reconsidered. Umbrello et al. [36] tried to
mitigate the issue thanks to the Value Sensitive Design (VSD) [11] in
combination with the Belief-Desire-Intention (BDI) [10] model. The
combination leads to making the vehicle behave by following some
design principles which, in turn, follow our ethical schemes and val-
ues on the road. Other approaches rely on cutting-edge technologies,
such as transformer-based architecture [20]. Also, it should be evalu-
ated when explanations are desired or needed. Shen et al. [30] inves-
tigated this need to better understand user expectations and increase
their reliability in non-explainable complex systems.

Symbolic solutions, which the proposed approach falls under, are
part of what is called an umbrella term, the field of Knowledge Rep-
resentation and Reasoning (KRR). This approach may require a tech-
nological change in the data acquisition process because such data
must be structured and, as is well known, are not prone to be ex-
tracted from images or videos. But this disadvantage could be over-
come by the increased explainability of their models considering also
the fact that another key data source is sensors that can produce, ma-
nipulate and transfer information in a structured way. The first ap-
proaches, such as Cuena et al. [4], adopted classical logic and the
Prolog programming language. The aim was to improve traffic or
reduce the severity of existing problems. They were able to recom-



mend increasing the duration of a traffic light phase (e.g.: green), or
suggest displaying certain messages on some Variable Message Pan-
els to divert traffic. Hülsen et al. [19] extended the state-of-the-art
by introducing ontologies into the traditional logic programming set-
ting. In the context of visual surveillance, the description of object
behaviour requires real-time analysis [25].

The natural upsides of the new paradigm emerged from the user
experts’ evaluation, which made them associate the semantics of
rules with scenes.

3 Automated MultiStrategy Reasoning for Traffic
Interpretation

In addition to learning patterns of standard or abnormal traffic be-
havior that can be used to supervise future traffic situations [9], a
useful functionality is traffic interpretation. This function is designed
in the form of an expert decision support module that uses auto-
matic reasoning to reproduce the inferences that an expert contin-
uously watching traffic videos would make. In this way, dangerous
or otherwise relevant situations can be detected in real time and no-
tified to relevant stakeholders, possibly even suggesting associated
actions that they might accept, modify, or reject. For this purpose,
relevant domain knowledge must be expressed in a logical formal-
ism and stored in a KB. It can be provided by domain experts and
formalized by knowledge engineers, or learned automatically using
First Order Logic (FOL) approaches. Using the KB, a traffic-related
video can be continuously “watched,” and the information it provides
can be formalized and provided to the automated system that inter-
prets it, issuing warnings if relevant situations arise. Furthermore, the
system can respond to specific questions from stakeholders.

In particular, our module uses GEAR (an acronym for ‘General
Engine for Automated Reasoning’) [8], a logical inference engine
capable of MultiStrategy Reasoning, i.e. of integrating and bringing
to cooperation several inference strategies in order to cope with the
several complexities posed by real-world tasks and problems. The
current GEAR prototype includes the following strategies:

• Deduction aims at making explicit knowledge that is implicit in
the available knowledge but is a necessary consequence thereof.

• Abstraction reduces the amount of information conveyed by a set
of facts, abstracting from unnecessary details.

• Abduction is devoted to coping with missing information, by
guessing unknown facts that are not stated in the available knowl-
edge, but are needed to solve a given problem, provided that they
satisfy some integrity constraints. Of course, there may be many
plausible explanations for a given observation.

• Uncertainty is the possibility that uncertainty can dramatically
improve the flexibility and robustness of reasoning.

• Argumentation deals with inconsistent knowledge, to distinguish
which of several contrasting, but internally consistent, positions
are justified.

• Induction is the inference of general knowledge starting from
specific observations.

• Ontological. An ontology defines and describes the kinds of en-
tity that are of interest in a domain, their properties, and relation-
ships. Typical ontology-based reasoning tasks are inheritance and
consistency checks.

• Similarity-based computation between FOL descriptions is
complex due to non-unique mapping between the descriptions.

• Analogy matches the characterizing features of two subjects, ob-
jects, situations, etc. even if they use different descriptors.

Reasoning operators act on the content of a so-called Knowledge
Base (KB). Knowledge bases handled by GEAR may include vari-
ous kinds of knowledge items, including Facts (simple statements),
Rules (implication-like formulas), Integrity Constraints, Abstraction
Operators, and Argumentative relationships. Rules may have a pri-
ority (a number used to determine which rule should be executed
first in case of conflicts). The premises of rules can use any, possi-
bly nested, composition of conjunction, disjunction, and negation. Its
conclusion can be a single atom or a conjunction of atoms or negated
atoms. Additional components are available to express abducibles
and integrity constraints for abduction, abstraction operators, or ar-
gumentative relationships. Knowledge can be organised in modular
way. Other predicates can be used to specify system settings (e.g.: to
set flags that direct the system’s behaviour), information related to
user interaction (e.g.: to specify the information that can be asked to
the user if missing in the KB), calls to pre-defined procedures (e.g.:
to call Prolog to carry out some computations), etc.

4 Sample Scenario
We evaluated the proposed method on a use case drawn from a hy-
pothetical scenario involving urban traffic areas. We assume that we
use information from cameras placed at critical points in the chosen
road area and interpret the behavior using an automatic reasoning
system. A number of state-of-the-art techniques have been employed
to achieve vehicle identification in real time; various types of vehicles
can be identified, including cars, trucks, buses, and motorcycles [2].
For this task, we used continuous streaming videos provided by the
SkylineWebcams streaming platform7. In particular, we chose an ur-
ban setting in Rome, namely Piazza Venezia.

Figure 1 shows a screen shot illustrating an instrument we made
for this purpose in action. The right side of the screen presents real-
time logs, with information such as the number of vehicles detected,
the accuracy of detection, and the duration of identification of each
vehicle. The left side of the screen displays frames illustrating the
bounding boxes surrounding the identified vehicles and their accu-
racy rates. While the video flows, the video analysis tool generates
vehicle-related information and asserts corresponding facts in the
KB. Note that throughout the case study, we used real-world data for
all tasks, so our experimental outcomes can be considered as mean-
ingful for practical application of our framework.

The experiments were run on a state-of-the-art high-performance
computing (HPC) system with a 64 bit architecture, endowed with an
Intel64 Family 6 Model 85 Stepping 4 GenuineIntel CPU with base
clock speed of 3.312GHz, 32GB RAM, and an NVIDIA GeForce
RTX 2080 Ti GPU featuring 4352 CUDA cores.

4.1 Automated Reasoning for Traffic Interpretation

We provide a demonstration use case for this feature in relation to
the location of Piazza Venezia in Rome. While the video flows, the
video analysis module generates vehicle-related information and as-
serts corresponding facts in the KB based on the following predi-
cates:

object(O,X0,X1,Y0,Y1,T) : object with identifier O is
recognised in the scene at time T , enclosed in a bounding box
with coordinates X0, X1, Y 0, Y 1.

next(T’,T”) : time T ′′ follows time T ′.

7 Live Cams in Italy - SkylineWebcams, available at: https://www.
skylinewebcams.com/en/webcam/italia.html



Figure 1. Vehicle detection application

Whenever appropriate or useful (e.g.: periodically every k frames
processed), the reasoning engine GEAR is started to interpret what
happened and return relevant notifications. It starts by deriving sim-
ple knowledge, as expressed by the predicates that we have defined
for this sample application reported in Table 1.

Rules for defining these predicates and for determining when a
time period or displacement is ‘relevant are stored in the KB using
GEAR’s formalism. These concepts are interrelated, meaning that
some are defined upon others (e.g.: move/6 is defined in terms of
distance/9).

Then, the reasoning may proceed with further concepts or situa-
tions of interest that the system is expected to identify (e.g.: road
traffic offences, etc.), at higher and higher levels of abstraction (i.e.,
not associated with a simple position occupied by a vehicle but de-
termined according to the overall vehicle behaviour and to its rela-
tionships to the road features and the behaviour of other vehicles). In
our sample use case, we focus on the following situations:

• traffic jam;
• vehicle going faster than the maximum allowed speed;
• vehicle passing from forbidden zones of the road;
• vehicle stopping in places where the stop is forbidden;
• vehicle taking a wrong turn;
• vehicle going around the square in a loop;

and provided detailed descriptions thereof and of how they can be
detected, possibly based on simpler situations that may not be rel-
evant by themselves. Multistrategy reasoning comes in handy for
many such tasks. Specifically:

• abstraction can simplify the scenario by removing noise or irrele-
vant background information;

• deduction can infer the behavior of drivers or categories of drivers
(e.g., dangerous, safe, distracted etc);

• induction can generalize the behavior of drivers for some category
or during some specific conditions (e.g. day vs night driving);

• abduction can infer unseen events (e.g., when one vehicle in the
scene hides another);

• uncertainty can make reasoning in complex scenarios more flexi-
ble;

• argumentation can fix possible inconsistencies due to errors in
sensor data (e.g., two cars in the same place or two distinct cars
identified as the same).

4.2 An example of deduction rule

As a simple example of a deduction rule, we can define the concept
of fast driver by the rule reported in Algorithm 1.

Algorithm 1 Fast Movement Detection Rule
1: Input: X , T1, T2

2: Output: fast(X,T1, T2, C)
3:
4: if for some X ,
5: C is the number of facts move(X,S1, S2, S3, S4, T )

such that:
6: T ≥ T1 ∧ T ≤ T2 ∧ C ≥ 2
7: then
8: fast(X,T1, T2, C)
9: WITH PRIORITY 1.0

10: AND CERTAINTY 1.0
11: end if

In other words, if X moves more than twice in the time interval
[T1, T2], then X is fast and C is an indicator of how fast it is.



Table 1. Predicates defined for the Piazza Venezia use case.

Predicate Description

move(O,X0,X1,Y0,Y1,T)
Object O moved (by a considerable distance) at time T , where X0, X1, Y 0, Y 1
are the displacements of each coordinate of its bounding box.

enter(O,P,T) Object O entered place P (a RoI) at time T .

leave(O,P,T) Object O left place P (a RoI) at time T .

still(O,T) Object O stopped at time T .

halt(O,L,T) Object O stopped for a certain period of time L starting from time T .

stay(O,P) Object O stayed in place P (a RoI).

placetime(O,P,T) Object O was in place P (a RoI) for a considerable time T .

status(O,T,S)
S is the status of the object O at time T , where S can be ‘moving’, ‘still’, or
someplace (RoI) identifier.

meet(L,T,P) Objects in the list L were in the same place P at time T .

wait(X,Y,T) Object X was still at time T , but is now in the same place as object Y .

distance(X00,X01,Y00,Y01,X10,X11,Y10,Y11,D)
D is the Euclidean distance between the coordinates X00, X01, Y 00, Y 01 and
X10, X11, Y 10, Y 11 of two bounding boxes.

closetimes(X,Y,T,L) L is the last timestamp, starting from T , in which X and Y were close to each
other.

close(X,Y,T,L)
L is the amount of time for which X and Y were close to each other, starting
from timestamp T .

accomplices(X,Y,T,D)
Objects X and Y are close to each other for a certain time D in the ‘halt’ state,
and so still for a considerable time, at time T .

fast(O,T1,T2,D)
Object O moved many times between timestamps T1 and T2 with distances
greater than or equal to D.

In GEAR’s formalism, this is expressed as:

rule(14,
fast(X,T1,T2,Count),
call_p((aggregate_all(count,

(move(X,S1,S2,S3,S4,T),T≥T1,T≤T2),
Count),Count≥2)),

1,1).

These descriptions were formalized by a knowledge engineer and
used to create a KB, that consisted of several dozen rules. Applied to
short videos taken from the Piazza Venezia location, this knowledge
could allow the system to successfully identify several occurrences
of those situations while the video was running and raise associated
alarms, as well as to identify those situations upon specific requests
of the stakeholder, such as:

• “Did any vehicle go around the square in a loop from time X to
time Y in the video?”.

• “Did any vehicles stand stop and occlude the passage of the square
from X hour to Y hour in the video?”.

5 Conclusion and Future Work Directions

Efficient traffic management remains a critical challenge for urban
transportation systems globally. Traffic anomalies, such as accidents,
congestion, and roadblocks, result in substantial social and economic
costs. Timely detection of these anomalies is essential for improving
traffic safety, reducing delays, and mitigating environmental impacts.
While numerous methods have been proposed, ranging from tradi-
tional statistical approaches to modern machine learning and com-
puter vision techniques, an important aspect is the explanability.

In this paper, we introduced a novel AI MultiStrategy Reasoning
approach able to apply automated reasoning to detect both sudden

and gradual traffic anomalies, such as accidents, congestion, and lane
violations. The approach was evaluated using real-world traffic data
from a major urban area, demonstrating its capability to explain by
means of logical rules various types of anomalies.

While the proposed approach is promising, it also has limitations.
The efficacy and accuracy of the detection methods highly depend on
the quality and completeness of the input data.

Future work may proceed with the definition of a complete frame-
work for Traffic Management. Starting having a solution for the in-
terpretation of the urban-suburban Traffic, we can proceed to develop
or integrate the most useful solution for:

• Information Extraction from Traffic Videos. In particular, two fun-
damental functionality are ”Vehicle Detection and Tracking” and
”Trajectory analysis and event detection”.

• Identification of Noteworthy Areas, i.e., given a map or video
frame, how identify areas that are relevant for traffic interpreta-
tion and understanding?

• Behavioral Modeling, i.e, model over which apply Supervision,
Prediction and Classification.

Obtained a framework with these characteristics it will be possible
to address several specific problems:

• Cross-Domain data integration: Expanding the framework to in-
corporate data from multiple sources, including IoT devices, so-
cial media, and weather reports, could provide a more comprehen-
sive view of traffic conditions, taking into account external factors
that influence road behavior.

• Human behavior analysis: Integrating the analysis of human be-
havior—both drivers and pedestrians—can offer deeper insights
into traffic dynamics. Understanding driver behavior and pedes-
trian movements could help develop more adaptive traffic man-
agement systems that cater to the needs of all road users.

• Integration with smart city infrastructures: Connecting the traffic
management framework with broader smart city systems, such as



smart lighting, parking, and emergency services, could enhance
urban responsiveness and create more cohesive city-wide traffic
management solutions.

• Sustainability and environmental impact: By optimizing traffic
flows and reducing congestion, the framework can contribute to
reducing greenhouse gas emissions and fuel consumption, pro-
moting sustainability in urban transportation systems.
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